首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
人教版(2012)
>
八年级下册
>
第十七章 勾股定理
>
17.1 勾股定理
>
人教八下数学17.1 第1课时勾股定理导学案
人教八下数学17.1 第1课时勾股定理导学案
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第十七章勾股定理17.1勾股定理第1课时勾股定理学习目标:1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.重点:用面积法来证明勾股定理,体会数形结合的思想.难点:会用勾股定理进行简单的计算.自主学习一、知识回顾1.网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B的面积吗?你又能想到什么方法算出正方形C的面积呢?方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:Sc=__________________________;右图:Sc=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:Sc=__________________________;右图:Sc=__________________________. 课堂探究一、要点探究探究点1:勾股定理的认识及验证想一想我们一起穿越回到2500年前,跟随毕达哥拉斯再去他那位老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面(如图):问题1试问正方形A、B、C面积之间有什么样的数量关系?问题2图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?问题3 在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C是否也有类似的面积关系?观察下边两幅图(每个小正方形的面积为单位1):思考正方形A、B、C所围成的直角三角形三条边之间有怎样的特殊关系?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”证明:∵S大正方形=________,S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.公式变形:探究点2:利用勾股定理进行计算典例精析例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b. 变式题1在Rt△ABC中,∠C=90°.(1)若a:b=1:2,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易漏解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.针对训练求下列图中未知数x、y的值: 二、课堂小结内容勾股定理在Rt△ABC中,∠C=90°,a,b为直角边,c为斜边,则有a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论当堂检测1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22.右图中阴影部分是一个正方形,则此正方形的面积为_____________.3.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.5.求斜边长17cm、一条直角边长15cm的直角三角形的面积.6.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.能力提升:7.如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,求△ABE及阴影部分的面积. 参考答案自主学习一、知识回顾方法1:方法2:课堂探究一、要点探究探究点1:勾股定理的认识及验证猜测:a2+b2=c2证法:c2(b-a)24探究点2:利用勾股定理进行计算典例精析例1解:(1)据勾股定理得(2)据勾股定理得变式题1解:(1)设a=x,b=2x,根据勾股定理建立方程得x2+(2x)2=52,解得(2)∵∠A=30°,b=15,∴c=2a.因此设a=x,c=2x,根据勾股定理建立方程得(2x)2-x2=152,解得变式题2解:本题斜边不确定,需分类讨论:当AB为斜边时,如图①,当BC为斜边时,如图②, 例2解:由勾股定理可得AB2=AC2+BC2=25,即AB=5.根据三角形面积公式,∴AC×BC=AB×CD.∴CD=.针对训练1.解:由勾股定理可得81+144=x2,解得x=15.2.解:由勾股定理可得y2+144=169,解得y=5.当堂检测1.C2.36cm²3.1754.74或245.解:设另一条直角边长是xcm.由勾股定理得152+x2=172,即x2=172-152=289-225=64,∴x=±8(负值舍去),∴另一直角边长为8cm,直角三角形的面积是×8×15=60(cm2).6.解:∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴BD=AD=1,∴AB=.在Rt△ADC中,∵∠C=30°,∴AC=2AD=2,∴CD=,∴BC=BD+CD=1+,∴△ABC的周长=AB+AC+BC=++3.7.解:∵AE=BE,∴S△ABE=AE·BE=AE2.又∵AE2+BE2=AB2,∴2AE2=AB2.∴S△ABE=AB2=.同理可得S△AHC+S△BCF=AC2+BC2.又∵AC2+BC2=AB2,∴阴影部分的面积为AB2=.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
人教版八下数学教学课件:17.1 勾股定理(第1课时)
17.1第1课时勾股定理导学案
17.1第1课时勾股定理学案
17.1第3课时利用勾股定理作图或计算导学案
2022人教八下第17章勾股定理17.1勾股定理第1课时勾股定理教案
2022人教八下第17章勾股定理17.1勾股定理第1课时勾股定理教学设计
2022人教八下第17章勾股定理17.1勾股定理第1课时勾股定理说课稿
2022人教八下第17章勾股定理17.1勾股定理第1课时勾股定理学案
2022人教八下第17章勾股定理17.1勾股定理第2课时勾股定理的实际应用学案
2022人教八下第17章勾股定理17.1勾股定理第3课时勾股定理在几何中的应用学案
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-02-10 16:22:02
页数:6
价格:¥2
大小:701.91 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划