首页

第5单元数学广角--鸽巢问题数学广角—鸽巢问题说课稿(人教版六下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

数学广角—鸽巢问题说课稿大家好!我今天说课的题目是《数学广角—鸽巢问题》,下面我将从说教材、说学情、说教法、说学法、说教学过程、说板书设计这几个方面展开我的说课。一、说教材《数学广角—鸽巢问题》是人教版小学数学六年级下册第五单元第1课时内容,本课主要引导学生经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”的原理,并应用这一原理解决简单的实际问题。是在学生已有生活经验的基础上建立数学模型的过程,为之后学习“鸽巢问题”一般形式和具体应用奠定基础,因此具有重要意义。在分析教材的基础上,结合新课改要求,我制定以下三维教学目标:1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。结合六年级学生的认知水平和认知特征,本课的教学重点在于经历探究过程,初步了解鸽巢原理,教学难点是理解鸽巢原理。二、说学情掌握学生基本情况,对把握和处理教材具有重要作用。六年级学生处于少年初期,思维活跃,求知欲强,但仍处于形象思维阶段,本课“鸽巢问题”的原理是一类较为抽象和艰涩的数学问题,对学生而言具有一定的挑战性。考虑以上因素,我会选取学生熟悉的感兴趣的事物,从直观到抽象,带领学生积极探索,达到理解知识、掌握知识的目的。 三、说教法为更好的帮助学生把握重点、突破难点,本课我主要采用情境教学法、启发式教学法,并用多媒体辅助教学,在具体情境中,感受鸽巢问题的产生,探索解决问题的方法,逐步完成对重点知识的探究。 四、说学法课堂教学作为素质教育的主阵地,我们应特别注重学法的渗透,在学法上,我倡导自主学习、探究学习、合作学习,调动学生积极性,让学生主导探究、合作交流,感受新知的形成,积累学习经验。五、说教学过程教学过程是说课的核心环节,我将着重进行分析,本课我将从游戏导入、探究新知、巩固练习、课堂小结和布置作业五个环节展开:(一)游戏激趣,导入新课上课伊始,我会询问学生:你们玩过“抢椅子”游戏吗?谁能说说游戏规则?学生回答后,组织学生进行几次“抢椅子”游戏。期间请学生注意观察,游戏后,提问:一个简单的游戏里,蕴含着什么样的数学知识呢?顺势引出课题:数学广角—鸽巢问题。 组织学生做游戏,在吸引学生注意力的同时,引发学生好奇心,进而激起强烈的求知欲和浓厚的学习兴趣。(二)师生互动,探究新知活动一:初步认识鸽巢原理 教师利用大屏幕出示教材中的例题1,提问学生:你得到了什么数学信息?学生观察后回答:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。然后启发:“总是”和“至少”是什么意思?组织同桌交流,之后指名学生回答,师生总结:“总有”是一定存在的意思,“至少”表示最低限度,是最少的意思。并向学生解释,这句话其实就是说无论怎么放,都会有一个笔筒里最少是2支铅笔。在学生理解题意的基础上,教师追问:为什么总有一个笔筒里至少有2支铅笔?这句话对吗?接着组织学生运用道具或画图方法开展小组合作探究验证。我会在活动前,启发学生思考:4支铅笔放进不同笔筒里是否看作同一种情况?让学生明确我们只考虑存在性,所以一个笔筒里有4支,另外两个笔筒里都是0支只是一种情况。接下来的活动过程中教师予以指导,探究完毕后,请小组代表汇报。预设学生探究出两种方法,方法一是枚举法,利用纸杯、铅笔摆一摆,将所有情况列举出来,学生摆的时候可能出现重复,可让其他组进行补充。运用枚举法发现一共有4种情况,无论哪种情况,总有一个笔筒至少有2支铅笔。方法二是以“平均分”来假设法,先把4支笔进行平均分,在每个笔筒中放1支,剩下的1支就要放进其中的一个笔筒,所以至少有一个笔筒里有2支铅笔。假设法比较难理解,所以我会再引导学生梳理,让学生明白平均分是为了让每个笔筒的笔尽可能少,从而明白平均分是此法的关键。 这样,我们验证了“总有一个笔筒里至少有2支铅笔”的正确性。在此基础上,教师介绍鸽巢问题的含义:将4支铅笔看做4只鸽子,3个笔筒看做3个鸽巢,上面的问题就变成了鸽子飞进鸽巢的问题,像这样的问题就是鸽巢问题。活动二:探究一般形式 教师出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本数。让学生读一读,找出数学信息,再次设疑:这句话对吗?为什么?接着开展小组活动,让学生用自己喜欢的方法探究。预设用列举法、假设法都能证明这句话是对的,重点讲解假设法,在学生汇报时,板书算式7÷3=2∙∙∙∙∙∙1帮助学生梳理思路。这里,教师可以引导学生反向思考:如果每个抽屉最多放2本,那么3个抽屉最多放几本?当结果与题目要求不符时,进一步得证。然后改变书的数量为8本、10本,让学生先独立思考再同桌交流,学生说发现,教师顺势用除法算式8÷3=2∙∙∙∙∙∙2、10÷3=3∙∙∙∙∙∙1来表示。接下来让学生观察3个算式,找出至少数与商的关系。引导学生根据“至少”的含义,得出至少数是“商+1”,随即教师引出鸽巢问题又叫抽屉问题。整个环节,用问题引导,层层递进,从发现到设疑,从验证到结论,让学生充分感知知识的生成,在探索和交流中,学习有价值的数学,感受数学的魅力。(三)巩固新知,深化新知我通过多媒体向学生展示“做一做“的题目:“抢椅子”游戏的道理是什么?学生认真思考,积极回答,体会到多着的1人想坐下,总有一把椅子上至少坐2人,并理解这同样是鸽巢问题,这样设计既能呼应导入环节,也能让学生体会游戏中的数学原理。(四)课堂小结,提高认识课程即将结束,带领学生回顾本节课你学到了什么,有哪些收获?师生交流、生生交流,意在启发引导、互相补充,让学生对本课知识有一个更加全面的认识。(五)布置作业,内化新知 根据学生对本课知识的理解掌握程度,设计课后习题1、2作为基础练习,并请学生整理课上所学,写一篇数学日记。巩固基础知识同时,梳理知识点,提高自学能力。本课的教学过程,我注重引导启发,尊重学生的主体地位,调动学生积极性。将抽象的知识通过具体例子呈现,组织学生自主探究、小组合作,在做一做中思考发现,在说一说中交流完善,达到对知识的深入理解。六、板书设计我的板书力求体现数学的简洁美,将本课重点知识以直观、清晰的形式呈现给学生,让学生容易把握,让课上的学习更加顺利!

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 小学 - 数学
发布时间:2022-04-09 18:00:09 页数:5
价格:¥3 大小:29.50 KB
文章作者:随遇而安

推荐特供

MORE