首页

19.4综合与实践多边形的镶嵌教案(沪科版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

19.4 综合与实践 多边形的镶嵌1.通过对用正多边形进行平面镶嵌的探索、交流,理解平面镶嵌的理由;(重点)2.能根据平面镶嵌的理由设计平面镶嵌的方案.(难点)一、情境导入下面的图形是由一些地板砖铺成的,请同学们看看它们有什么特点.二、合作探究探究点一:用相同的正多边形作平面镶嵌用正五边形能作平面镶嵌吗?为什么?解:用正五边形不能作平面镶嵌.理由如下:因为正五边形的内角和为(5-2)×180°=540°,所以每个内角的度数为=108°.而360°不能被108°整除,即由108°的整数倍不能得到一个周角,故不能作平面镶嵌,如图所示.方法总结:使用给定的某种正多边形,当围绕一个点拼在一起的几个正多边形的内角和为360°时,就可以铺满平面的区域(一部分).否则,就不能作平面镶嵌.探究点二:用两种或两种以上的正多边形作平面镶嵌设在一个顶点周围有a个正三角形,b个正十二边形,能铺满地面,则a=________,b=________.解析:正三角形每个内角是60°,正十二边形的每个内角是150°.根据在一个拼接点处内角和恰好是360°可知,正三角形和正十二边形的个数满足60a+150b=360,即2a+5b=12.若在一个顶点处周围有1个正三角形,则2+5b=12,解得b=2;若在一个顶点周围有2个正三角形,则2×2+5b=12,解得b=,正多边形的个数应该是正整数,所以这种情况不符合题意;若在一个顶点周围有3个正三角形,则2×3+5b=12,解得b=,不 符合题意;若在一个顶点周围有4个正三角形,则2×4+5b=12,解得b=,不符合题意.只有a=1,b=2符合题意.故答案为1,2.方法总结:抓住一个拼接点,看几种不同正多边形在同一个拼接点处能否拼出360°.如果要用两种正多边形地砖进行平铺,且在拼接点处不确定两种地砖的个数时,要分情况讨论,对需要的其中一种正多边形,从自然数1开始计算,然后利用360°的周角确定其他正多边形的个数,得出的数值必须是正整数.三、板书设计本节课体现了多边形内角和公式在实际生活中的应用.通过探索平面图形镶嵌的条件,理解镶嵌的概念和特点.经历动手拼图、相互交流、展示成果等活动,引导学生解决使用一种正多边形镶嵌的条件.能用实验的方法寻找多边形镶嵌的条件.培养学生积极动手能力,从中感受数学活动的乐趣和数学美的魅力.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-03-26 17:00:07 页数:2
价格:¥3 大小:847.53 KB
文章作者:随遇而安

推荐特供

MORE