首页

19.3矩形、菱形、正方形2第2课时菱形的判定教案(沪科版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

第2课时 菱形的判定1.理解并掌握菱形的判定方法;(重点)2.灵活运用菱形的判定方法进行有关的证明和计算.(难点)一、情境导入木工在做菱形的窗格时,总是保证四条边框一样长,你知道其中的道理吗?借助以下图形探索:如图,在四边形ABCD中,AB=BC=CD=DA,试说明四边形ABCD是菱形.二、合作探究探究点一:四边相等的四边形是菱形如图所示,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.解析:根据平移的性质可得CF=AD=10cm,DF=AC,再在Rt△ABC中利用勾股定理求出AC的长为10cm,就可以根据“四边相等的四边形是菱形”得到结论.证明:由平移变换的性质得CF=AD=10cm,DF=AC.∵∠B=90°,AB=6cm,BC=8cm,∴AC===10(cm),∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.方法总结:当四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.探究点二:对角线互相垂直的平行四边形是菱形如图所示,▱ABCD的对角线BD的垂直平分线与边AB,CD分别交于点E,F.求证:四边形DEBF是菱形.解析:本题首先应用到平行四边形的性质,其次应用到菱形的判定方法.要证四边形DEBF是菱形,可以先证明其为平行四边形,再利用“对角线互相垂直”证明其为菱形. 证明:∵四边形ABCD是平行四边形,∴AB∥DC.∴∠FDO=∠EBO.又∵EF垂直平分BD,∴OB=OD.在△DOF和△BOE中,∴△DOF≌△BOE(ASA).∴OF=OE.∴四边形DEBF是平行四边形.又∵EF⊥BD,∴四边形DEBF是菱形.方法总结:用此方法也可以说是对角线互相垂直平分的四边形是菱形,但对角线互相垂直的四边形不一定是菱形,必须强调对角线是互相垂直且平分.探究点三:菱形的判定和性质的综合运用如图所示,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形BCFE的边长为4,高为2,∴S菱形BCFE=4×2=8.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计经历菱形的猜想、证明的过程,进一步提高学生的推理论证能力, 体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-03-26 17:00:07 页数:3
价格:¥3 大小:624.91 KB
文章作者:随遇而安

推荐特供

MORE