首页

华师大版九下第二十七章圆27.2与圆有关的位置关系4切线长教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

切线长教学目标:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。2、在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。教学重点:理解切线长定理。教学难点:灵活应用切线长定理解决问题。教学过程:一、复习引入:1.切线的判定定理和性质定理.2.过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?二、合作探究  1、切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长。2、切线长定理(1)操作:纸上一个⊙O,PA是⊙O的切线,连结PO,沿着直线PO将纸对折,设与点A重合的点为B。OB是⊙O的半径吗?PB是⊙O的切线吗?猜一猜PA与PB的关系?∠APO与∠BPO呢?从上面的操作及圆的对称性可得:  从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.(2)几何证明. 如图,已知PA、PB是⊙O的两条切线.求证:PA=PB,∠APO=∠BPO.  证明:切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.4 三、巩固练习1、如图1,PA、PB是⊙O的两条切线、A、B为切点。PO交⊙O于E点(1)若PB=12,PO=13,则AO=____(2)若PO=10,AO=6,则PB=____(3)若PA=4,AO=3,则PO=____;PE=_____.(4)若PA=4,PE=2,则AO=____.2、如图2,PA、PB是⊙O的两条切线、A、B为切点,CD切⊙O于E交PA、PB于C、D两点。(1)若PA=12,则△PCD周长为____。(2)若△PCD周长=10,则PA=____。(3)若∠APB=30°,则∠AOB=_____,M是⊙O上一动点,则∠AMB=____3、如图Rt△ABC的内切圆分别与AB、AC、BC、相切于点E、D、F,且∠ACB=90°,AC=3、BC=4,求⊙O的半径。4、如图Rt△ABC中,∠ACB=90°,AC=6、BC=8,O为BC上一点,以O为圆心,OC为半径作圆与AB切于D点,求⊙O的半径。4 5、如图,⊙O与△ADE各边所在直线都相切,切点分别为M、P、N,且DE⊥AE,AE=8,AD=10,求⊙O的半径  6、如图,AB是⊙O的直径,AE、BF切⊙O于A、B,EF切⊙O于C.求证:OE⊥OF  7、4 如图,⊙O的直径AB=12cm,AM、BN是切线,DC切⊙O于E,交AM于D,交BN于C,设AD=x,BC=y.  (1)求y与x的函数关系式,并说明是什么函数?  (2)若x、y是方程2t2-30t+m=0的两根,求x,y的值.  (3)求△COD的面积.四、小结归纳  1.圆的切线长概念和定理五、作业设计  4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-03-03 11:00:17 页数:4
价格:¥3 大小:55.00 KB
文章作者:随遇而安

推荐特供

MORE