首页

山东省曲阜夫子学校2022届高三数学12月月考试题文

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/11

2/11

剩余9页未读,查看更多内容需下载

山东省曲阜夫子学校2022届高三数学12月月考试题文(考试时间:120分钟总分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。每小题只有一个选项符合题意,请将正确答案填入答题卷中。)1.已知集合,则2.若复数满足,则等于3.已知,且,则向量与的夹角为3.已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=5.已知双曲线()的离心率为,则的渐近线方程为6.已知是空间中两条不同的直线,为空间中两个互相垂直的平面,则下列命题正确的是若,则若,则若,则若-11-,则6.已知函数的图像在点处的切线与直线平行,则实数D.8.下列说法正确的是命题都是假命题,则命题“”为真命题.,函数都不是奇函数.函数的图像关于对称.将函数的图像上所有点的横坐标伸长到原来的倍后得到9.执行右面的程序框图,如果输入的,则输出的的值分别为10.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的表面积为11.已知等差数列中,,公差,若,,则数列的前项和的最大值为-11-12.若方程仅有一个解,则实数的取值范围为第Ⅱ卷(非选择题90分)二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填入答题卷中。)13.已知函数,若,则▲▲.14.已知满足约束条件,则的最大值为▲▲.15.等比数列的前项和为,,若,则▲▲.16.已知双曲线()的左、右焦点分别为,,是右支上的一点,与轴交于点,的内切圆在边上的切点为.若,则的离心率是▲▲.三、解答题(本大题共6小题,共70分。解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题12分)已知等差数列的公差大于,且.若分别是等比数列的前三项.(Ⅰ)求数列的通项公式;(Ⅱ)记数列的前项和为,若,求的取值范围.18.(本小题12分)-11-已知平面向量,其中.(Ⅰ)求函数的单调增区间;(Ⅱ)设的内角的对边长分别为若,求的值.19.(本小题12分)如图,四棱锥中,底面是直角梯形,,,.(Ⅰ)求证:平面平面;(Ⅱ)若,求点到平面的距离.20.(本小题12分)已知椭圆的一个焦点,点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线平行于直线(坐标原点),且与椭圆交于,两个不同的点,若为钝角,求直线在轴上的截距的取值范围.21.(本小题12分)已知函数.(Ⅰ)当时,求函数在区间-11-上的最值;(Ⅱ)若是函数的两个极值点,且,求证:.选考题:请考生在第22、23两题中任选一题作答。如果多做,则按所做第一题计分。22.(本小题10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是.(Ⅰ)将曲线的极坐标方程化为直角坐标方程;(Ⅱ)若直线与曲线相交于两点,且,求直线的倾斜角的值.23.(本小题10分)选修:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ),,求的取值范围.高三数学(文科)参考答案-11-一、选择题(本大题共12小题,每小题5分,共60分)123456789101112ADABBCACBCDD二、填空题(本大题共4小题,每小题5分,共20分)13.14.15.16.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.解:(Ⅰ)设等差数列的公差为,是等比数列的前三项,,即,化简得,………………………4分又..………………………6分(Ⅱ)依题意可得是等比数列的前三项,………………8分等比数列的公比为,首项为.等比数列的前项和为.………………………10分由,得,化简得.解得,.………………………12分18.解:(1)………………………4分由,得-11-又∵,∴函数的增区间为.…………………6分(Ⅱ)由,得,又因为,所以,从而,即.…………………8分因为,所以由正弦定理得,故或,………………10分当时,,从而,当时,,又,从而综上的值为或.………………………12分19解:(Ⅰ)证明:取中点,连接可知且又,在有又,,即………………………3分又平面,平面平面,………………………5分又平面平面平面………………………6分(Ⅱ)设点到平面的距离为,又平面平面,-11-且平面平面面………………………8分………………………9分在中有,…………………10分,所以点到平面的距离为.………………………12分20.(1)由已知,则1又点在椭圆上,所以2………………………3分由12解得(舍去),.故椭圆的标准方程为.………………………5分(Ⅱ)由直线平行于得直线的斜率为,又在轴上的截距,故的方程为.由得,又线与椭圆交于,两个不同的点,设,,则,.所以,于是.………………………8分-11-为钝角等价于,且,则,…………………10分即,又,所以的取值范围为.…………………12分21.解:(Ⅰ)当时,函数的定义域为,所以,当时,,函数单调递减;当时,,函数单调递增.所以函数在区间上的最小值为,又,显然所以函数在区间上的最小值为,最大值为.………………………5分(Ⅱ)因为所以,因为函数有两个不同的极值点,所以有两个不同的零点.………………………6分因此,即有两个不同的实数根,设,则,当时,,函数单调递增;当,,函数单调递减;所以函数的最大值为………………………7分-11-所以当直线与函数图像有两个不同的交点时,,且要证,只要证………………………8分易知函数在上单调递增,所以只需证,而,所以即证………………………10分记,则恒成立,所以函数在上单调递减,所以当时所以,因此.……………………12分22.解:(Ⅰ)由得.∵∴曲线C的直角坐标方程为:.…………5分(Ⅱ)将直线的参数方程代入圆的方程化简得.设A,B两点对应的参数分别为,则是上述方程的两根,则有.∴∴-11-∵∴.………………………10分23.解法一:(Ⅰ)①当时,,得;………………………2分2时,,得;………………………3分3时,,得;………………………4分综上所述,不等式解集为.………………………5分(Ⅱ)依题意,其图象如图所示,………………7分的图象为过定点的直线,………………8分由图象可知,当直线的斜率时,,.故的取值范围为.………………10分-11-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-25 20:34:32 页数:11
价格:¥3 大小:867.04 KB
文章作者:U-336598

推荐特供

MORE