首页

山东省青岛市城阳区2022届高三数学上学期期中学分认定考试试题文

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/12

2/12

剩余10页未读,查看更多内容需下载

2022—2022学年度高三期中考试高三数学(文)试题2022.111.答题前。先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:第II卷必须用0.5毫米黑色签字笔(中性笔)作答。答案必须写在答题纸指定区域;如需改动,先划掉原来的解答,然后再写上新的解答;不准使用涂改液、胶带纸、修正带.写在试题卷、草稿纸和答题卡上的非答题区域均无效.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A.B.C.D.2.已知函数A.1B.C.D.03.设向量的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设的大小关系为A.a>b>cB.c>b>aC.c>a>bD.a>c>b5.已知,且角终边上一点A.B.C.D.[]12\n6.已知实数x,y满足约束条件的最大值是A.C.4C.D.77.中,,则BC边上中线AD的长为A.B.C.D.8.已知函数是R上的偶函数,在上是单调递减函数.下列命题:命题上单调递增且的最大值;命题,则实数a的取值范围是.则下列命题为真的是:A.B.C.D.[][]9.关于函数的单调性和零点情况说法正确的是A.在定义域上恒为单调递增函数;在上无零点;B.在定义域上有增也有减;在上有零点;C.在定义域上恒为单调递增函数;在(1,e)上有唯一零点;D.在定义域上有增也有减;在上有零点.10.成等比数列,则的形状为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形11.若方程仅有一个实数根,则实数k的取值集合是A.B.C.[0,1)D.12.已知是定义在R上的奇函数,,则等于12\nA.B.C.D.[]二、填空题:本大题共4个小题,每小题5分.13.数列的前n项和为的通项公式__________.14.在上任取实数,方程有实根的概率为_________.15.函数上的极大值为___________.16.函数处的切线方程为___________.三、解答题:共70分.解答应写出文字说明.[]17.(本题满分12分)已知.(I)若时,恰取得最值,求角和此时的最值;(Ⅱ)若的值.18.(本题满分12分)中,角A、B、C对应的边分别为.(I)若的面积S;(Ⅱ)若的值.19.(本题满分12分)已知数列的前n项和为.(I)求数列的通项公式;(Ⅱ)求数列的前n项和.20.(本题满分12分)某体检中心开展综合身体指标检查的同时,可以按一定的测算公式对受检人身体综合素质情况进行综合评价赋分(百分制),为单位和个人作为参考使用.现选取某单位拟招录的同一年龄段的n名新员工身体素质综合得分作为样本,按照得分分布分成5组,[50,60),[60,70),[70,80),[80,90),[90,100),得分分布情况绘制为频率分布直方图如下表所示:现已知得分在50—60之间被淘汰的人数为2.(I)求出a和n的值;12\n(Ⅱ)若得分成绩在80分以上(含80分)为综合身体素质优秀,从员工居住地来源方面统计得如下信息:样本中成绩落在[50,80)中的城市、乡村工人数比为5:9,成绩落在[80,100)中的城市、乡村员工数比为1:2,填写2×2列联表,并判断是否有95%的把握认为员工身体综合素质优秀与居住地有关.参考公式和数据:21.(本题满分12分)已知函数.(I)分析函数在定义域上的单调性;(Ⅱ)已知上有实根,求实数a的取值范围.22.(本题满分10分)已知函数.(I)若,解不等式;(Ⅱ)若,试证明,不存在对任意都恒成立,若存在,求出a取值范围;若不存在,请分析说明理由.2022-2022学年度高三期中考试高三数学(文)试题参考答案及评分标准2022.1112\n一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.BAACD6-10BCCCD11-12DB二、填空题:本大题共4个小题,每小题5分.13.14.15.16.三、解答题:共70分.解答应写出文字说明,17.(本题满分12分)解:(Ⅰ)…………………………3分所以因为,所以…………………………4分可以看出只有当时,有最小值,即时取得最小值…………………6分此时所以,,有最小值………………………7分(Ⅱ)所以(*)……………………8分12\n因为………………………10分将(*)式代入上式得:…………………12分18.(本题满分12分)解:(Ⅰ)因为与的夹角为的补角,,所以所以,因为所以…………………………2分所以……………………4分(Ⅱ)所以因为,所以所以………………………………7分所以所以………………………………9分,所以…………10分12\n由正弦定理:所以,解得:………………………………12分19.(本题满分12分)解:(Ⅰ)设数列的首项为,公差为,;根据等差数列的通项公式和求和公式得:…………………3分解之得…………………4分所以……………………6分(Ⅱ)由(Ⅰ),……………8分所以……………9分所以…………………………12分20.(本题满分12分)12\n参考公式和数据:P(K2≥k)0.500.050.0250.005k0.4553.8415.0247.879解:(Ⅰ)由频率分布直方图的特点:可得:解得………3分之间的员工人数为人,频率为所以…………………6分(Ⅱ)由题意:得分在[80,90),[90,100]的人数有人,其中来自城市、乡村的员工人数分别为和人得分在间的人数分别有人,其中来自城市、乡村的员工人数分别为和人列联表为:城市乡村合计优秀不优秀合计4012\n…………………………………………………9分根据卡方公式可得:由此,可以得到:没有的把握认为员工身体综合素质优秀与居住地有关………………………………………………12分21.(本题满分12分)解:(Ⅰ)函数的定义域为…………………1分令,为开口向上的二次函数,,(1)当时,,二次函数图像与轴无交点[]对所有,恒成立,所以恒成立所以时,函数在定义域上恒为单调递增函数…………………………2分(2)当或时,,二次函数图像与轴有两交点,令得两交点横坐标分别为(i)如果,二次函数对称轴,位于轴左侧,由所以在上,函数恒成立所以在上,所以时,函数定义域上恒为单调递增函数……………………4分12\n(ii)当时,次函数对称轴,位于轴右侧,由由二次函数的性质,可以得到:当时,,所以;当时,,所以当时,,所以所以,当时,函数在区间上为单调递增函数;在区间上为单调递减函数;在区间上为单调递增函数…………………5分综上可得:时,函数在定义域上恒为单调递增函数;当时,函数在区间上为单调递增函数;在区间上为单调递减函数;在区间上为单调递增函数.(其中)……………6分(Ⅱ)由,得:…………………………7分令[]令,得……………………8分12\n列出在的变化情况如下表:[]…………………11分由题意可知,有解,即存在,使成立,所以…………………………………12分22.(本题满分10分)解:(Ⅰ)时,当时,,所以[]当时,,所以当时,,所以综上,有……………………………3分(i)当时,得:,即,解得:由,得:(ii)当时,,由得:,即,解得:由,得12\n(iii)当时,即:,解得:[]考虑条件,所以此时无解.综合(i)(ii)(iii)可得:不等式的解集合为即的解集为…………………6分(Ⅱ)因为,所以因为,等号当且仅当成立即对任意,当且仅当时,又,对任意,对任意,都有恒成立所以必有即得,与矛盾,所以不存在,使对任意都恒成立…………………6分12

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-25 20:37:17 页数:12
价格:¥3 大小:3.34 MB
文章作者:U-336598

推荐特供

MORE