首页

山东省青岛市胶州一中2022届高三数学仿真模拟试题 文 新人教A版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/9

2/9

剩余7页未读,查看更多内容需下载

山东省青岛市胶州一中2022届高三仿真模拟文科数学第I卷(共60分)一、选择题:本大题共12小题。每小题5分,共60分.在每小题给出的四个选项中。只有一项是符合题目要求的.1.复数(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.函数的定义域为()A.B.C.D.3.已知等比数列()A.64B.81C.128D.2434.在给出如下四个命题:①若“p且q”为假命题,则p、q均为假命题;②命题“若”的否命题为“若”;③“”的否定是“”;④在中,“”是“”的充要条件.其中不正确的命题的个数是()A.4B.3C.2D.15.设O为坐标原点,,若点取得最小值时,点B的个数是()A.1B.2C.3D.无数个6.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.2B.5C.11D.237.如图,梯形,对角线AC、DB相交于点O.若A.B.9C.D.8.已知集合,在区间上任取一实数x,则“”的概率为()A.B.C.D.9.函数的图象为C,如下结论中正确的个数是()①图象C关于直线对称;②图象关于点对称;③函数在区间内是增函数;④由的图象向右平移个单位长度可以得到图象A.1B.2C.3D.410.函数的部分图象是()11.曲线的焦点F恰好是曲线的右焦点,且曲线与曲线交点连线过点F,则曲线的离心率是()A.B.C.D.12.已知函数,则函数的零点个数是()A.1B.2C.3D.4第II卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.下图是某几何体的三视图,其中主视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是_________.914.为积极倡导“学生每天锻炼一小时”的活动,某学校举办了一次以班级为单位的广播操比赛.9位评委给高三(1)班打出的分数如茎叶图所示.统计员在去掉一个最高分和一个最低分后平均分为91.复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员计算无误,则数字x应该是_________.15.已知两点上任意一点,则△ABC面积的最小值是________.16.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)则第57个数对是______.三、解答题:本大题共6小题,共74分,答题时要写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量,设函数+(1)若,f(x)=,求的值;(2)在△ABC中,角A,B,C的对边分别是,且满足,求f(B)的取值范围.18.(本小题满分12分)某公司有男职员45名、女职员15名,按照分层抽样的方法组建了一个4人的科研攻关小组。(I)求某职员被抽到的概率及科研攻关小组中男、女职员的人数;(II)经过一个月的学习、讨论,这个科研攻关组决定选出两名职员做某项实验,方法是先从小组里选出1名职员做实验,该职员做完后,再从小组内剩下的职员中选一名做实验,求选出的两名职员中恰有一名女职员的概率;(III)试验结束后,第一次做试验的职员得到的试验数据为68,70,71,72,74,第二次做试验的职员得到的试验数据为69,70,70,72,74.哪位职员的实验更稳定?并说明理由。919.(本小题满分12分)如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且2PA=AD,E、F、G、H分别是线段PA、PD、CD、BC的中点.(Ⅰ)求证:BC∥平面EFG;(Ⅱ)求证:平面FDH⊥平面AEG;(Ⅲ)求三棱锥E-AFG与四棱锥P-ABCD的体积比.20.(本小题满分12分)已知数列前n项和为,(I)证明:数列是等比数列(II)若满足,,求.21.(本小题满分13分)已知椭圆C的方程为,焦点在x轴上,离心率(1)求椭圆C的方程(2)设动点满足,其中是椭圆C上的动点,直线与的斜率之积为,求证:为定值(3)在(2)的条件下,是否存在两个定点,使得为定值;若存在,求出定值,若不存在,请说明理由。22.(本小题13分)已知函数f(x)=;(1)求y=f(x)在点P(0,1)处的切线方程;(2)设g(x)=f(x)+x-1仅有一个零点,求实数m的值;9(3)试探究函数f(x)是否存在单调递减区间?若有,设其单调区间为[t,s],试求s-t的取值范围?若没有,请说明理由。2022年普通高考文科数学仿真试题答案(三)一、选择题:1-5DBACB6-10DBCCA11-12DD二、填空题:13.14.215.16.(2,10)17、解:(1)依题意得,………………………………2分由得:,,从而可得,………………………………4分则……6分(2)由得:,从而,……………………10分故f(B)=sin() ………………………………12分19、解:(Ⅰ)∵BC∥AD,AD∥EF,∴BC∥EF…………………………………………………2分∵BC平面EFG,EF平面EFG,∴BC∥平面EFG……………………………3分(Ⅱ)∵PA⊥平面ABCD,∴PA⊥DH,即AE⊥DH………………………………5分9∵△ADG≌△DCH,∴∠HDC=∠DAG,∠AGD+∠DAG=90°.∴∠AGD+∠HDC=90°.∴DH⊥AG.又∵AE∩AG=A,∴DH⊥平面AEG又∵平面DHF∴平面FDH⊥平面AEG………………………………8分(Ⅲ)…………………………………………10分=…………………………12分921、解:(1)由,,解得,故椭圆的标准方程为.        (2)设,9则由,得,即,∵点M,N在椭圆上,∴设分别为直线的斜率,由题意知,,∴,    故,即(定值)           (3)由(2)知点是椭圆上的点,∵,∴该椭圆的左右焦点满足为定值,因此存在两个定点,使得为定值。   22、解:(1)∵点P在函数y=f(x)上,由f(x)=得:故切线方程为:y=-x+1………………3分(2)由g(x)=f(x)+x-1=可知:定义域为,且g(0)=0,显然x=0为y=g(x)的一个零点;则………………5分①当m=1时,,即函数y=g(x)在上单调递增,g(0)=0,故仅有一个零点,满足题意。………………………………6分②当m>1时,则,列表分析:x0+0-0+9g(x)极大值极小值0又∵x→-1时,g(x)→-,∴g(x)在上有一根,这与y=g(x)仅有一根矛盾,故此种情况不符题意。………………………………9分(3)假设y=f(x)存在单调区间,由f(x)=得:,………………………………10分令∵,h(-1)=m+2-m-1=1>0,∴h(x)=0在上一定存在两个不同的实数根s,t,………………………12分即,的解集为(t,s),即函数f(x)存在单调区间[t,s],则s-t=,由m≥1可得:s-t………………………………13分9

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-25 20:37:21 页数:9
价格:¥3 大小:280.25 KB
文章作者:U-336598

推荐特供

MORE