首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
福建省2022学年龙岩市非一级达标校高一上学期期末教学质量检查数学试题
福建省2022学年龙岩市非一级达标校高一上学期期末教学质量检查数学试题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/17
2
/17
剩余15页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022-2022学年福建省龙岩市非一达标校高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卡上.)1.(5分)已知集合A={x∈N|0≤x≤5},集合B={1,3,5},则∁AB=( )A.{0,2,4}B.{2,4}C.{0,1,3}D.{2,3,4}2.(5分)tan225°的值为( )A.B.﹣1C.D.13.(5分)要在半径OA=1m的圆形金属板上截取一块扇形板,使其弧AB的长为2m,则圆心角∠AOB为( )A.1B.2C.3D.44.(5分)下列函数中,既是奇函数又是增函数的为( )A.y=exB.y=sinxC.y=2x﹣2﹣xD.y=﹣x35.(5分)函数的最小正周期是( )A.1B.2C.3D.46.(5分)已知,则tanα=( )A.﹣6B.C.D.67.(5分)在△ABC中,,,AD是BC边上的中线,则=( )A.﹣7B.C.D.78.(5分)关于狄利克雷函数,下列叙述错误的是( )A.D(x)的值域是{0,1}B.D(x)是偶函数C.D(x)是奇函数D.任意x∈R,都有f[f(x)]=19.(5分)已知函数,则f(﹣6)+f(log26)=( )A.6B.8C.9D.1010.(5分)已知向量,,其中||=1,,,则在17/17\n方向上的投影为( )A.B.C.﹣2D.211.(5分)设点A(x,y)是函数f(x)=sin(﹣x)(x∈[0,π])图象上任意一点,过点A作x轴的平行线,交其图象于另一点B(A,B可重合),设线段AB的长为h(x),则函数h(x)的图象是( )A.B.C.D.12.(5分)已知定义在R上的奇函数,满足f(2﹣x)+f(x)=0,当x∈(0,1]时,f(x)=﹣log2x,若函数F(x)=f(x)﹣sinπx,在区间[﹣1,m]上有10个零点,则m的取值范围是( )A.[3.5,4)B.(3.5,4]C.(3,4]D.[3,4)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应位置.)13.(5分)已知向量=(﹣2,3),=(x,1),若⊥,则实数x的值是 .14.(5分)已知a=1.010.01,b=ln2,c=log20.5,则a,b,c从小到大的关系是 .15.(5分)= .16.(5分)若f(x)=sinx+cosx在[0,a]是增函数,则a的最大值是 三、解答题(本大题共6小题,共72分.解答写在答题卡相应位置并写出文字说明,证明过程或演算步骤.)17.(10分)某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0π2π17/17\nxAsin(ωx+φ)04﹣40(Ⅰ)请将上表数据补充完整,并直接写出函数f(x)的解析式.(Ⅱ)若函数f(x)的值域为A,集合C={x|m﹣1≤x≤m+3}且A∪C=A,求实数m的取值范围.18.(12分)已知sinα=,α∈().(Ⅰ)求sin2的值;(Ⅱ)若sin(α+β)=,β∈(0,),求β的值.19.(12分)已知函数f(x)=3.(Ⅰ)当a=1时,求函数f(x)的值域;(Ⅱ)若f(x)有最大值81,求实数a的值.20.(12分)若,且,(Ⅰ)求函数f(x)的解析式及其对称中心.(Ⅱ)函数y=g(x)的图象是先将函数y=f(x)的图象向左平移个单位,再将所得图象横坐标伸长到原来的2倍,纵坐标不变得到的.求函数y=g(x),x∈[0,π]的单调增区间.21.(12分)已知定义在R上的奇函数f(x),对任意两个正数x1,x2,且x1<x2都有x1f(x1)﹣x2f(x2)<0,且f(2)=0.(Ⅰ)判断函数g(x)=xf(x)的奇偶性;(Ⅱ)若,是否存在正实数a,使得g(h(x))<0恒成立?若存在求a的取值范围,若不存在请说明理由.22.(12分)某投资人欲将5百万元资金投人甲、乙两种理财产品,根据银行预测,甲、乙两种理财产品的收益与投入资金的关系式分别为y1=t,y2=,其中a为常数且0<a≤5.设对乙种产品投入资金x百万元.(Ⅰ)当a=2时,如何进行投资才能使得总收益y最大;(总收益y=y1+y2)(Ⅱ)银行为了吸储,考虑到投资人的收益,无论投资人资金如何分配,要使得总收益不低于0.45百万元,求a的取值范围.17/17\n17/17\n2022-2022学年福建省龙岩市非一达标校高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卡上.)1.(5分)已知集合A={x∈N|0≤x≤5},集合B={1,3,5},则∁AB=( )A.{0,2,4}B.{2,4}C.{0,1,3}D.{2,3,4}【分析】可解出集合A,然后进行补集的运算即可.【解答】解:A={0,1,2,3,4,5};∴∁AB={0,2,4}.故选:A.【点评】考查描述法、列举法的定义,以及补集的运算.2.(5分)tan225°的值为( )A.B.﹣1C.D.1【分析】直接利用诱导公式化简求值.【解答】解:tan225°=tan(180°+45°)=tan45°=1.故选:D.【点评】本题考查三角函数的化简求值,考查诱导公式的应用,是基础题.3.(5分)要在半径OA=1m的圆形金属板上截取一块扇形板,使其弧AB的长为2m,则圆心角∠AOB为( )A.1B.2C.3D.4【分析】把已知数据代入弧长公式计算可得.【解答】解:由题意可知扇形的弧长l=2,扇形的半径r=OA=1,∴则圆心角∠AOB的弧度数α===2.故选:B.【点评】本题考查弧长公式,属基础题.4.(5分)下列函数中,既是奇函数又是增函数的为( )17/17\nA.y=exB.y=sinxC.y=2x﹣2﹣xD.y=﹣x3【分析】根据条件分别判断函数的奇偶性和单调性即可.【解答】解:A.y=ex是增函数,为非奇非偶函数,不满足条件.B.y=sinx是奇函数,在定义域上不是单调性函数,不满足条件.C.f(﹣x)=2﹣x﹣2x=﹣(2x﹣2﹣x)=﹣f(x),则f(x)是奇函数,∵y=2x是增函数,y=2﹣x是减函数,则y=2x﹣2﹣x是增函数,故C正确,D.y=﹣x3是奇函数,则定义域上是减函数,不满足条件.故选:C.【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.5.(5分)函数的最小正周期是( )A.1B.2C.3D.4【分析】由题意利用正切函数的周期性,得出结论.【解答】解:函数的最小正周期是=2,故选:B.【点评】本题主要考查正切函数的周期性,属于基础题.6.(5分)已知,则tanα=( )A.﹣6B.C.D.6【分析】由已知直接利用诱导公式及同角三角函数基本关系式求解tanα.【解答】解:由,得,即,解得tanα=6.故选:D.【点评】本题考查三角函数的化简求值,考查同角三角函数基本关系式及诱导公式的应用,是基础题.7.(5分)在△ABC中,,,AD是BC边上的中线,则=( )A.﹣7B.C.D.717/17\n【分析】由已知及向量基本运算可知,,然后结合向量数量积的性质即可求解【解答】解:AD是BC边上的中线,∴,则====﹣故选:B.【点评】本题主要考查了平面向量的基本定理及向量数量积的性质的简单应用,属于基础试题.8.(5分)关于狄利克雷函数,下列叙述错误的是( )A.D(x)的值域是{0,1}B.D(x)是偶函数C.D(x)是奇函数D.任意x∈R,都有f[f(x)]=1【分析】根据分段函数的表达式,结合函数值域,奇偶性以及函数值的定义分别进行判断即可.【解答】解:A.函数的值域为{0,1},故A正确,B.若x是无理数,则﹣x也是无理数,此时f(﹣x)=f(x)=0,若x是有理数,则﹣x也是有理数,此时f(﹣x)=f(x)=1,综上f(﹣x)=f(x)恒成立,故函数f(x)是偶函数,故B正确,C.由B知函数是偶函数,不是奇函数,故C错误,D.当x∈R时,f(x)=1或0都是有理数,则f[f(x)]=1,故D正确,故选:C.【点评】本题主要考查命题的真假判断,涉及函数的值域,奇偶性以及函数值的判断,利用分段函数的解析式分别进行判断是解决本题的关键.9.(5分)已知函数,则f(﹣6)+f(log26)=( )A.6B.8C.9D.10【分析】根据题意,由函数的解析式求出f(﹣6)与f(log26)的值,相加即可得答案.17/17\n【解答】解:根据题意,函数,则f(﹣6)=log3[3﹣(﹣6)]=log39=2,f(log26)=+1=7,则f(﹣6)+f(log26)=2+7=9;故选:C.【点评】本题考查分段函数函数值的计算,注意分段函数解析式的形式,属于基础题.10.(5分)已知向量,,其中||=1,,,则在方向上的投影为( )A.B.C.﹣2D.2【分析】由,,两边同时平方可求,||,进而可求在方向上的投影.【解答】解:∵||=1,,,∴16=,4=,解可得,=,||=,则在方向上的投影为=,故选:A.【点评】本题主要考查了平面向量数量积的性质的简单应用,属于基础试题.11.(5分)设点A(x,y)是函数f(x)=sin(﹣x)(x∈[0,π])图象上任意一点,过点A作x轴的平行线,交其图象于另一点B(A,B可重合),设线段AB的长为h(x),则函数h(x)的图象是( )A.B.17/17\nC.D.【分析】作出函数的图象,根据对称性求出A,B的坐标关系进行判断即可.【解答】解:f(x)=sin(﹣x)=﹣sinx,(x∈[0,π])设A(x,﹣sinx),则A,B关于x=对称,此时B(π﹣x,﹣sinx),当0≤x≤时,|AB|=π﹣x﹣x=π﹣2x,当≤x≤π时,|AB|=x﹣(π﹣x)=2x﹣π,则对应的图象为D,故选:D.【点评】本题主要考查函数的图象的识别和判断,利用三角函数的对称性求出A,B的坐标关系是解决本题的关键.12.(5分)已知定义在R上的奇函数,满足f(2﹣x)+f(x)=0,当x∈(0,1]时,f(x)=﹣log2x,若函数F(x)=f(x)﹣sinπx,在区间[﹣1,m]上有10个零点,则m的取值范围是( )A.[3.5,4)B.(3.5,4]C.(3,4]D.[3,4)【分析】由方程的根与函数的零点问题的相互转化,结合函数的奇偶性、对称性、周期性,作图观察可得解【解答】解:由f(x)为奇函数,则f(x)=﹣f(﹣x),又f(2﹣x)+f(x)=0,得:f(2﹣x)=f(﹣x),17/17\n即函数f(x)是其图象关于点(1,0)对称,且周期为2的奇函数,又y=sinπx的图象关于(k,0)对称,其图象如图所示:在区间[﹣1,m]上有10个零点,则实数m的取值范围为:[3.5,4),故选:A.【点评】本题考查了方程的根与函数的零点问题,函数的奇偶性、对称性、周期性,属中档题.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应位置.)13.(5分)已知向量=(﹣2,3),=(x,1),若⊥,则实数x的值是 .【分析】根据即可得出,进行数量积的坐标运算即可求出x的值.【解答】解:∵;∴;∴.故答案为:.【点评】考查向量垂直的充要条件,向量坐标的数量积运算.14.(5分)已知a=1.010.01,b=ln2,c=log20.5,则a,b,c从小到大的关系是 c<b<a .【分析】容易得出,1.010.01>1,0<ln2<1,log20.5<0,从而可得出a,b,c的大小关系.【解答】解:∵1.010.01>1.010=1,0<ln2<lne=1,log20.5<log21=0;∴c<b<a.17/17\n故答案为:c<b<a.【点评】考查指数函数、对数函数的单调性,以及增函数的定义.15.(5分)= 1 .【分析】利用指数、对数的性质、运算法则直接求解.【解答】解:=lg()﹣2+1=1.故答案为:1.【点评】本题考查指数式、对数式化简求值,考查指数、对数的性质、运算法则等基础知识,考查运算求解能力,是基础题.16.(5分)若f(x)=sinx+cosx在[0,a]是增函数,则a的最大值是 【分析】利用两角和的正弦公式化简函数的解析式,再利用正弦函数的单调性,求得a的最大值.【解答】解:∵f(x)=sinx+cosx=sin(x+)在[0,a]是增函数,∴a+≤,∴a≤,则a的最大值是,故答案为:.【点评】本题主要考查两角和的正弦公式,正弦函数的单调性,属于基础题.三、解答题(本大题共6小题,共72分.解答写在答题卡相应位置并写出文字说明,证明过程或演算步骤.)17.(10分)某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0π2πxAsin(ωx+φ)04﹣4017/17\n(Ⅰ)请将上表数据补充完整,并直接写出函数f(x)的解析式.(Ⅱ)若函数f(x)的值域为A,集合C={x|m﹣1≤x≤m+3}且A∪C=A,求实数m的取值范围.【分析】(Ⅰ)由题意根据五点法作图,将上表数据补充完整,并直接写出函数f(x)的解析式.(Ⅱ)由题意可得C⊆A,可得,由此求得实数m的取值范围.【解答】解:(Ⅰ)根据表中已知数据,解得A=4,ω=2,,函数表达式为.补全数据如下表:ωx+φ0π2πxAsin(ωx+φ)040﹣40(Ⅱ)∵,∴A=[﹣4,4],又A∪C=A,∴C⊆A.依题意,∴实数m的取值范围是[﹣3,1].【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,集合中参数的取值范围,属于基础题.18.(12分)已知sinα=,α∈().(Ⅰ)求sin2的值;(Ⅱ)若sin(α+β)=,β∈(0,),求β的值.【分析】(Ⅰ)直接利用二倍角公式,求得sin2的值.(Ⅱ)利用同角三角函数的基本关系,求得cos(α+β)的值,再利用两角差的正弦公式求得sinβ=sin[(α+β)﹣α]的值,可得β的值.【解答】解:(Ⅰ)因为sinα=,α∈(),所以cosα=﹣=﹣.17/17\n从而sin2==.(Ⅱ)因为α∈(),β∈(0,),所以α+β∈(,),所以cos(α+β)=﹣=﹣.∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=•(﹣)﹣(﹣)•=,∴β=.【点评】本题主要考查二倍角公式,同角三角函数的基本关系,两角差的正弦公式的应用,属于基础题.19.(12分)已知函数f(x)=3.(Ⅰ)当a=1时,求函数f(x)的值域;(Ⅱ)若f(x)有最大值81,求实数a的值.【分析】(Ⅰ)当a=1时,求出f(x)的解析式,结合指数函数和二次函数的单调性的性质进行求解即可.(Ⅱ)利用换元法结合指数函数和二次函数的单调性的性质求出最大值,建立方程关系进行求解即可.【解答】解:(Ⅰ)当a=1时,f(x)==≥3﹣1=,∴函数f(x)的值域为[,+∞).(Ⅱ)令t=ax2﹣4x+3,当a≥0时,t无最大值,不合题意;当a<0时,∵t=ax2﹣4x+3=a(x﹣)2﹣+3,∴t≤3﹣,又f(t)=3t在R上单调递增,∴f(x)=3t≤=81=34,∴3﹣=4,∴a=﹣4.【点评】17/17\n本题主要考查复合函数单调性和值域的求解,结合指数函数和二次函数的单调性的关系是解决本题的关键.20.(12分)若,且,(Ⅰ)求函数f(x)的解析式及其对称中心.(Ⅱ)函数y=g(x)的图象是先将函数y=f(x)的图象向左平移个单位,再将所得图象横坐标伸长到原来的2倍,纵坐标不变得到的.求函数y=g(x),x∈[0,π]的单调增区间.【分析】(Ⅰ)利用两个向量的数量积公式,三角恒等变换,化简f(x)的解析式,再利用正弦函数的图象的对称性求得对称中心.(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的单调性,得出结论.【解答】解:(Ⅰ)依题意有=(2sinx,cos2x)•(cosx,﹣)=2sinxcosx﹣cos2x=sin2x﹣cos2x=2sin(2x﹣),令2x﹣=kπ,则,k∈Z,∴函数y=f(x)的对称中心为.(Ⅱ)由(Ⅰ)得,,∴将函数y=f(x)的图象向左平移个单位,再将所得图象横坐标伸长到原来的2倍,纵坐标不变,可得的图象.由,即,又x∈[0,π],∴g(x)的单调增区间为.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,正弦函数的图象的对称性、单调性、以及函数y=Asin(ωx+φ)的图象变换规律,属于中档题.21.(12分)已知定义在R上的奇函数f(x),对任意两个正数x1,x2,且x1<x2都有x1f(x1)﹣x2f(x2)<0,且f(2)=0.17/17\n(Ⅰ)判断函数g(x)=xf(x)的奇偶性;(Ⅱ)若,是否存在正实数a,使得g(h(x))<0恒成立?若存在求a的取值范围,若不存在请说明理由.【分析】(Ⅰ)根据函数的奇偶性的定义判断即可;(Ⅱ)根据函数的单调性和奇偶性得到关于a的不等式,解出即可.【解答】解:(Ⅰ)∵f(x)为奇函数,∴f(﹣x)=﹣f(x)又∵g(﹣x)=﹣xf(﹣x)=﹣x•[﹣f(x)]=xf(x)=g(x),∴g(x)为偶函数;(Ⅱ)依题意有g(x)在(0,+∞)上单调递增,又g(x)为偶函数,∴g(x)在(﹣∞,0)上单调递减,又f(0)=f(﹣2)=f(2)=0,所以g(0)=g(﹣2)=g(2)=0,要使得g(x)<0,则x∈(﹣2,0)∪(0,2),由g(h(x))<0得h(x)∈(﹣2,0)∪(0,2)∵,∴,∴,∵a>0,,又h(x)∈(﹣2,0)∪(0,2),∴即,∴存在使得g(h(x))<0恒成立.【点评】本题考查了函数的单调性,奇偶性问题,考查转化思想,三角函数的性质,是一道综合题.22.(12分)某投资人欲将5百万元资金投人甲、乙两种理财产品,根据银行预测,甲、乙两种理财产品的收益与投入资金的关系式分别为y1=t,y2=,其中a为常数且0<a≤5.设对乙种产品投入资金x百万元.(Ⅰ)当a=2时,如何进行投资才能使得总收益y最大;(总收益y=y1+y2)(Ⅱ17/17\n)银行为了吸储,考虑到投资人的收益,无论投资人资金如何分配,要使得总收益不低于0.45百万元,求a的取值范围.【分析】(Ⅰ)当a=2时求出总收益y=y1+y2的解析式,结合一元二次函数最值性质进行求解即可.(Ⅱ)根据条件转化为y=+≥对任意x∈[0,5]恒成立,利用换元法转化为一元二次函数进行讨论求解即可.【解答】解:(Ⅰ)设对乙种产品投入资金x百万元,则对甲种产品投入资金5﹣x百万元当a=2时,y=y1+y2=(5﹣x)+•2=,(0≤x≤5),令t=,则0≤t≤,y=﹣(t2﹣2t﹣5),其图象的对称轴t=1∈[0,],∴当t=1时,总收益y有最大值,此时x=1,5﹣x=4.即甲种产品投资4百万元,乙种产品投资1百万元时,总收益最大……………(5分)(Ⅱ)由题意知y=+=≥对任意x∈[0,5]恒成立,即﹣2x+2a+1≥0对任意x∈[0,5]恒成立,令g(x)=2x+2a+1,设t=,则t∈[0,],则g(t)=﹣2t2+2at+1,其图象的对称轴为t=,……………(7分)①当0<≤,即0<a≤时,g(t)在[0,]单调递增,在[,]单调递减,且g(0)≥g(),∴g(t)min=g()=2a﹣9≥0,得a≥,又0<a≤∴≤a≤②当<≤,即<a≤2时,g(t)在[0,]单调递增,在[,]单调递减,且g(0)<g(),可得g(t)min=g(0)=1≥0,符合题意∴<a≤2③当>,即2<a≤5时,易知g(t)=﹣2t2+2at+1在[0,]单调递增17/17\n可得g(t)min=g(0)=1≥0恒成立,2<a≤5综上可得≤a≤5.∴实数a的取值范围是[,5].……………(12分)【点评】本题主要考查函数的应用问题,利用换元法转化为一元二次函数,利用一元二次函数对称性与区间的关系是解决本题的关键.综合性较强,难度较大.17/17
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
福建省2022学年龙岩市非一级达标校高二上学期期末教学质量检查历史试题
福建省2022学年龙岩市非一级达标校高一上学期期末教学质量检查历史试题
福建2022龙岩市非一级达标校高一上学期期末教学质量检查地理试题
福建省2022学年龙岩市非一级达标校高二上学期期末教学质量检查化学试题
福建省2022学年高龙岩市非一级达标校二上学期期末教学质量检查物理试题
福建省2022学年龙岩市非一级达标校高二上学期期末教学质量检查政治试题
福建省龙岩市非一级达标校2022学年高二英语上学期期末质量检查试题
福建省龙岩市非一级达标校2022学年高一英语上学期期末质量检查试题
福建省2022学年龙岩市非一级达标校高一上学期期末教学质量检查英语试题
福建省龙岩市非一级达标校2022学年高二语文上学期期末质量检查试题
文档下载
收藏
所属:
高中 - 数学
发布时间:2022-08-25 21:08:46
页数:17
价格:¥3
大小:344.89 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划