首页

湘教版八下数学第2章四边形小结与复习课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/39

2/39

3/39

4/39

剩余35页未读,查看更多内容需下载

小结与复习第2章四边形要点梳理考点讲练课堂小结课后作业 一、多边形的内角和与外角和多边形的内角和等于(n-2)×180°多边形的外角和等于360°正多边形每个内角的度数是正多边形每个外角的度数是要点梳理 几何语言文字叙述对边平行对边相等对角相等∴AD=BC,AB=DC.∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D.∵四边形ABCD是平行四边形,二、平行四边形的性质对角线互相平分∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC.ABCDO 几何语言文字叙述两组对边相等一组对边平行且相等∴四边形ABCD是平行四边形,∵AD=BC,AB=DC.∴四边形ABCD是平行四边形,∵AB=DC,AB∥DC.三、平行四边形的判定对角线互相平分∴四边形ABCD是平行四边形,∵OA=OC,OB=OD.两组对边分别平行(定义)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC.平行线之间的距离处处相等ABCDO 1.中心对称把一个图形绕着某一个点旋转____,如果它能与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.180°四、中心对称 2.中心对称的特征中心对称的特征:在成中心对称的两个图形中,对应点所连线段都经过,并且被对称中心________.3.中心对称图形把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.对称中心平分 1.三角形的中位线定义:连接三角形两边中点的线段叫做三角形的中位线.2.三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.五、三角形的中位线用符号语言表示∵DE是△ABC的中位线∴DE∥BC, 项目四边形对边角对角线平行且相等平行且四边相等平行且四边相等四个角都是直角对角相等邻角互补四个角都是直角互相平分且相等互相垂直平分且相等,每一条对角线平分一组对角互相垂直且平分,每一条对角线平分一组对角六、矩形、菱形、正方形的性质 四边形条件①定义:有一内角是直角的平行四边形②三个角是直角的四边形③对角线相等的平行四边形①定义:一组邻边相等的平行四边形②四条边都相等的四边形③对角线互相垂直的平行四边形①定义:一组邻边相等且有一个角是直角的平行四边形②有一组邻边相等的矩形③有一个角是直角的菱形七、矩形、菱形、正方形的判定方法 考点一多边形的内角和与外角和例1:已知一个多边形的每个外角都是其相邻内角度数的,求这个多边形的边数.解:设此多边形的外角的度数为x,则内角的度数为4x,则x+4x=180°,解得x=36°.∴边数n=360°÷36°=10.考点讲练 1.一个正多边形的每一个内角都等于120°,则其边数是.6【解析】因为该多边形的每一个内角都等于120°,所以它的每一个外角都等于60°.所以边数是6.归纳拓展在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其在求边数的问题中,常常利用定理列出方程,进而再求得边数.针对训练 考点二平行四边形的性质例2如图,在平行四边形ABCD中,下列结论中错误的是(  )A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC=BC【解析】A.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2,故A正确;B.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,故B正确;C.∵四边形ABCD是平行四边形,∴AB=CD,故C正确;D 方法总结主要考查了平行四边形的性质,关键是掌握平行四边形对边相等且平行,对角相等. 针对训练2.如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,(平行四边形的对角相等,对边相等)∵AE平分∠BAD,CF平分∠BCD,∴∠EAB=∠BAD,∠FCD=∠BCD,∴∠EAB=∠FCD,在△ABE和△CDF中∠B=∠DAB=CD∴△ABE≌△CDF,∴BE=DF.∠EAB=∠FCD∵AD=BC∴AF=EC. 例3如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为(  )A.4cmB.5cmC.6cmD.8cm【解析】∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=AC=5cm,OB=OD=BD=3cm,∵∠ODA=90°,∴AD==4cm.A 方法总结主要考查了平行四边形的性质,平行四边形的对角线互相平分,解题时还要注意勾股定理的应用. 【解析】∵在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,∴AO=CO=12cm,BO=19cm,AD=BC=28cm,∴△BOC的周长是:BO+CO+BC=12+19+28=59(cm).针对训练3.如图,在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则△BOC的周长是(  )A.45cmB.59cmC.62cmD.90cmB 考点三平行四边形的判定例4如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形(  )A.OA=OC,OB=ODB.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BCD.AB=CD,AO=COD 平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.方法总结 针对训练4.如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,(1)求证:AB=EF.(1)证明:∵AC∥DE,∴∠ACD=∠EDF,∵BD=CF,∴BD+DC=CF+DC,即BC=DF,又∵∠A=∠E,∴△ABC≌△EFD(AAS),∴AB=EF; (2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.(2)猜想:四边形ABEF为平行四边形,理由如下:由(1)知△ABC≌△EFD,∴∠B=∠F,∴AB∥EF,又∵AB=EF,四边形ABEF为平行四边形(一组对边平行且相等的四边形是平行四边形). 考点四中心对称及中心对称图形例5下列图形中,既是轴对称图形,又是中心对称图形的是(  ).ABCDD【解析】图A.图B都是轴对称图形,图C是中心对称图形,图D既是中心对称图形也是轴对称图形. 5.下列说法不正确的是()A.任何一个具有对称中心的四边形都是平行四边形B.平行四边形既是轴对称图形,又是中心对称图形C.线段、平行四边形、矩形、菱形、正方形都是中心对称图形D.正三角形、矩形、菱形、正方形都是轴对称图形,且对称轴都不止一条.B针对训练 考点五三角形的中位线例6已知:AD是△ABC的中线,E是AD的中点,F是BE的延长线与AC的交点.求证:.证明:过点D作DH∥BF,交AC于点H.∵AD是△ABC的中线.∴D是BC的中点.∴CH=HF=CF∵E是AD的中点,EF∥DH.∴AF=FH.∴AF=FCABCDEFH 针对训练6.若三角形的三条中位线之比为6:5:4,三角形的周长为60cm,那么该三角形中最长边的边长为___;解析:设三角形的三条中位线之长分别为6x,5x,4x,则三角形的三条边长分别为12x,10x,8x,依题意有12x+10x+8x=60,解得x=2.所以,最长边12x=24(cm).24cm 例7:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5,求矩形对角线的长.解:∵四边形ABCD是矩形.∴AC=BD(矩形的对角线相等).OA=OC=AC,OB=OD=BD,(矩形对角线相互平分)∴OA=OD.ABCDO考点六矩形的性质和判定 ABCDO∵∠AOD=120°,∴∠ODA=∠OAD=(180°-120°)=30°.又∵∠DAB=90°,(矩形的四个角都是直角)∴BD=2AB=2×2.5=5. 7.如图,在□ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求□ABCD的面积.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵△ABO是等边三角形,∴OA=OB=AB=4,∠BAC=60°.∴AC=BD=2OA=2×4=8.ABCDO针对训练 ∴□ABCD是矩形(对角线相等的平行四边形是矩形).∴∠ABC=90°(矩形的四个角都是直角).在Rt△ABC中,由勾股定理,得AB2+BC2=AC2,∴BC=.∴S□ABCD=AB·BC=4×=ABCDO 8.如图,O是菱形ABCD对角线的交点,作BE∥AC,CE∥BD,BE、CE交于点E,四边形CEBO是矩形吗?说出你的理由.DABCEO解:四边形CEBO是矩形.理由如下:已知四边形ABCD是菱形.∴AC⊥BD.∴∠BOC=90°.∵BE∥AC,CE∥BD,∴四边形CEBO是平行四边形.∴四边形CEBO是矩形(有一个角是直角的平行四边形是矩形). 例8:如图,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,求菱形的边长AB和对角线AC的长.解:∵四边形ABCD是菱形,∴AC⊥BD(菱形的对角线互相垂直)OB=OD=BD=×6=3(菱形的对角线互相平分)在等腰三角形ABC中,∵∠BAD=60°,∴△ABD是等边三角形.∴AB=BD=6.∴在Rt△AOB中,AO∴AC=2AO=ABCOD考点七菱形的性质和判定 证明:在△AOB中.∵AB=,OA=2,OB=1.∴AB2=AO2+OB2.∴△AOB是直角三角形,∠AOB是直角.∴AC⊥BD.∴□ABCD是菱形(对角线垂直的平行四边形是菱形).9.已知:如右图,在□ABCD中,对角线AC与BD相交于点O,AB=,OA=2,OB=1.求证:□ABCD是菱形.ABCOD针对训练 10.如图,两张等宽的纸条交叉重叠在一起,猜想重叠部分的四边形ABCD是什么形状?说说你的理由.ABCDEF解:四边形ABCD是菱形.过点C作AB边的垂线,交点为E,作AD边上的垂线,交点为F.S四边形ABCD=AD·CF=AB·CE.由题意可知CE=CF且四边形ABCD是平行四边形.∴AD=AB.∴四边形ABCD是菱形. 例9如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.FABECD解析:先由两组平行线得出四边形BECF为平行四边形;再由一组邻边相等可得菱形;最后由一个直角,得出是正方形.45°45°考点八正方形的性质和判定 FABECD证明:∵BF∥CE,CF∥BE,∴四边形BECF是平行四边形.∵四边形ABCD是矩形,∴∠ABC=90°,∠DCB=90°,∵BE平分∠ABC,CE平分∠DCB,∴∠EBC=45°,∠ECB=45°,∴∠EBC=∠ECB.∴EB=EC,∴□BECF是菱形.在△EBC中∵∠EBC=45°,∠ECB=45°,∴∠BEC=90°,∴菱形BECF是正方形.(有一个角是直角的菱形是正方形) 平行四边形性质①对边平行且相等②对角相等,邻角互补③对角线互相平分判定①两组对边分别平行的②两组对边分别相等的③一组对边平行且相等的④对角线互相平分的四边形平行四边形课堂小结 三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.多边形的内角和与外角和内角和计算公式(n-2)×180°(n≥3的整数)外角和多边形的外角和等于360°特别注意:与边数无关正多边形内角=,外角= 四边形的分类及转化有一个角是90°(或对角线相等)有一对邻边相等(或对角线互相垂直)平行四边形矩形菱形正方形一组邻边相等且一个内角为直角(或对角线互相垂直且相等)有一个角是90°(或对角线相等)有一对邻边相等(或对角线互相垂直)课堂小结 课后作业见章末练习

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-02-16 09:00:35 页数:39
价格:¥3 大小:965.50 KB
文章作者:随遇而安

推荐特供

MORE