首页

四川省遂宁市2022届高三数学(文)11月零诊考试试题(带答案).doc

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/12

2/12

剩余10页未读,查看更多内容需下载

遂宁市高中2022届零诊考试数学(文科)试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分。总分150分。考试时间120分钟。第Ⅰ卷(选择题,满分60分)注意事项:1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。并检查条形码粘贴是否正确。2.选择题使用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。3.考试结束后,将答题卡收回。一、选择题:本大题共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一个是符合题目要求的。1.已知集合,,求()A.B.C.D.2.若复数,则()A.B.C.D.3.若,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.=()A.B.C.D.5.已知数列的前项和为,且满足,,若,则() A.B.C.10D.6.若,满足约束条件,则的最小值为()A.-1B.0C.1D.27.已知函数,则下列图象错误的是()A.的图象:B.的图象:C.的图象:D.的图象:8.已知数列是递减的等比数列,的前项和为,若,,则=()A.54B.36C.27D.189.若,,,,则a,b,c,d的大小关系是()A.B.C.D.10.如图,在中,,,若, 则()A.B.C.D.11.与曲线和都相切的直线与直线垂直,则=()A.-8B.-3C.4D.612.将函数的图象先向右平移个单位长度,再把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若对满足,有恒成立,且在区间上单调递减,则的取值范围是()A.B.C.D.第Ⅱ卷(非选择题,满分90分)注意事项:1.请用蓝黑钢笔或圆珠笔在第Ⅱ卷答题卡上作答,不能答在此试卷上。2.试卷中横线及框内注有“▲”的地方,是需要你在第Ⅱ卷答题卡上作答。本卷包括必考题和选考题两部分。第13题至第21题为必考题,每个试题考生都作答;第22、23题为选考题,考生根据要求作答。二、填空题:本大题共4个小题,每小题5分,共20分。13.已知向量,,若,则正实数的值 为▲.14.已知函数,则的对称中心为▲.15.设命题:>2;命题:关于的方程的两个实根均大于0.若命题“且”为真命题,求的取值范围为▲.16.已知函数和,若的极小值点是的唯一极值点,则k的最大值为▲.三、解答题:本大题共70分。解答应写出文字说明、证明过程或演算步骤。17.(本小题满分12分)已知函数(1)求的定义域(写成集合或区间形式);(2)若正实数,满足,求的最小值.▲18.(本小题满分12分)已知函数,其中,,且,(1)求的解析式;(2)求单调递增区间及对称轴;(3)求.▲19.(本小题满分12分)已知数列为等比数列,正项数列满足,且, (1)求和的通项公式;(2)若从中去掉与数列中相同的项后余下的项按原来的顺序组成数列,设,求.▲20.(本小题满分12分)已知的内角A,B,C所对边分别为,,,且关于的一元二次方程有两个相等的实数根,又(1)求B;(2)延长BC至D,使BD=6,若的面积,求AD的长.▲21.(本小题满分12分)已知函数(1)若,求在处的切线方程;(2)若在处取得极值,求的单调区间和极值;(3)当时,讨论函数的零点个数.▲请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分。22.(本小题满分10分)选修4—4:坐标系与参数方程已知直线过点,且倾斜角为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程与的参数方程;(2)若与相交于不同的两点,,求的值. ▲23.(本小题满分10分)选修4—5:不等式选讲已知函数(1)求不等式的解集;(2)若关于的不等式的解集为,求的取值范围.▲遂宁市高中2022届零诊考试数学(文科)试题参考答案及评分意见一、选择题:(每小题5分,共12小题,共60分)题号123456789101112答案DACDBBCCABAD二、填空题:(每小题5分,共4小题,共20分)13.214.15.16.17.【解析】:(1)由题意得……………………………………………2分或故所求定义域为…………………………………………………………6分(2)因为,所以………………………8分又,为正实数,所以当且仅当时取最小值, 故的最小值为…………………………………………………………12分18.解析:(1)因为,,,则有解得,所以……………………………………………3分(2)若单调递增,则,,即,,又由,,即,。故单调递增区间为,;对称轴为,……………7分(2)因为最小正周期为,且,,,所以,所以。……………………………………12分19.解析:(1)因为,所以,又,所以.……………………………………………………………………2分即,又,所以数列是首项为2,公差为2的等差数列.所以,即。………………………………………4分设的公比为,又,,所以,解得,所以.综上,数列和的通项公式分别为,………6分(2)由(1)知,,,,,,,,.所以.10分.…………………………………………………12分20.解析:(1)由,可知, 即,所以……2分又关于的一元二次方程有两个相等的实数根,所以有,即…………………………………………………3分,由正弦定理,可得,………………4分因为,所以,因此或.分别代入,可知当时,不成立.因此.……………………………………………………………………………6分(2)由可知,即,因此为等边三角形,即,……………………………………………………………………………………………7分,整理可得,即,…………………………………………9分由余弦定理可知,在中,,因此的长为.………………………………………………………………12分21.解析:(1)当时,,,,故所求切线方程为,即……………2分(2)因为,所以,因为函数在处取得极值,令,即,解得。经检验,当时,为函数的极大值点,符合题意。……………3分 此时,函数的定义域为,,由,解得或;由,解得,所以在,上单调递增;在上单调递减。当时,;当时,…………………………………………………………7分(3)法一…………………………………8分①②③综上:① ②③………………………12分其它赋值言之有理酌情给分。法二令,,由,解得;由,解得,所以在上单调递减,在上单调递增。所以,又,即,所以故①当时,没有零点;②当时,有一个零点;③当结合图像当时,有两个零点。…………………………………………12分(无说明扣1分)22.解析:(1)曲线C的极坐标方程为,即,将,代入得,即。………………………………………………………3分因为直线过定点,且倾斜角为,则直线的参数方程为,即(为参数)(注:只要能化为的其他形式的参数方程也 对!)………………………………………………………………………………5分(2)将直线的参数方程代入得设方程的两根分别为,,则由根与系数的关系有,所以,故…………………………………………………10分23.解析:(1)由有,即或或,化简整理得或或;解得或或,故所求的不等式的解集为或………………………………5分(2)令,………………………………………7分因为当时,;时,;时,,所以函数在单调递减,在,单调递增,则,由题意有,解得,则实数的取值范围为 …………………………………………………………………………10分

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2021-12-04 20:00:11 页数:12
价格:¥3 大小:547.62 KB
文章作者:随遇而安

推荐特供

MORE