首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
北京市延庆区2021届高三第一次模拟考试数学试题 Word版含答案
北京市延庆区2021届高三第一次模拟考试数学试题 Word版含答案
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/13
2
/13
剩余11页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
www.ks5u.com延庆区高三模拟考试试卷数学2021.3本试卷共6页,满分150分,考试时长120分钟第Ⅰ卷(选择题)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则=(A)(B)(C)(D)2.已知为无穷等比数列,且公比,记为的前项和,则下面结论正确的是(A)(B)(C)是递减数列(D)存在最小值3.已知为抛物线的焦点,过点的直线交抛物线于两点,若,则线段的中点的横坐标为(A)(B)(C)(D)4.设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件5.某四棱锥的三视图如图所示,其中正(主)视图是等腰直角三角形,侧(左)视图是直角三角形,俯视图是直角梯形,则该四棱锥的体积是(A)(B)(C)(D)6.在平面直角坐标系中,直线的方程为,以点为圆心且与直线相切的所有圆中,半径最大的圆的半径为(A)(B)(C)(D)7.已知定义在上的幂函数(为实数)过点,记,-13- ,,则的大小关系为(A)(B)(C)(D)8.设为所在平面内一点,,则(A)(B)(C)(D)9.已知函数 则不等式的解集是(A)(B)(C)(D)10.酒驾是严重危害交通安全的违法行为.根据规定:驾驶员的血液中酒精含量为,不构成饮酒驾车行为(不违法),达到的即为酒后驾车,及以上为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了,若在停止喝酒后,他血液中酒精含量每小时减少,要想不构成酒驾行为,那么他至少经过(参考数据:)(A)4小时(B)6小时(C)8小时(D)10小时第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题5分,共25分.11.若复数(为虚数单位)是纯虚数,则=___________.12.已知双曲线的一条渐近线过点,则双曲线的离心率为.13.在二项式的展开式中,系数为有理数的项的个数是___________.14.已知的面积为,,则=.-13- 15.同学们,你们是否注意到:自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深涧的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为(其中,是非零常数,无理数…),对于函数以下结论正确的是.①如果,那么函数为奇函数;②如果,那么为单调函数;③如果,那么函数没有零点;④如果那么函数的最小值为2.三、解答题:本大题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.16.(本小题共13分)已知函数(),再从条件①,条件②中选择一个作为已知,求:(Ⅰ)的值;(Ⅱ)将的图象向右平移个单位得到的图象,求函数的单调增区间.条件①:的最大值为2;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.17.(本小题共14分)如图,四棱柱的底面是边长为的正方形,侧面为矩形,且侧面-13- 底面,,分别是的中点.(Ⅰ);(Ⅱ)18.(本小题共14分)2022年第24届冬季奥林匹克运动会,简称“北京张家口冬奥会”,将在2022年02月04日~2022年02月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会,北京将承办所有冰上项目,延庆和张家口将承办所有的雪上项目。下表是截取了2月5日和2月6日两天的赛程表:2022年北京冬奥会赛程表(第七版,发布自2020年11月)2022年2月北京赛区延庆赛区张家口赛区开闭幕式冰壶冰球速度滑冰短道速滑花样滑冰高山滑雪有舵雪橇钢架雪车无舵雪橇跳台滑雪北欧两项越野滑雪单板滑雪冬季两项自由式滑雪当日决赛数5(六)**11*11*1166(日)**1*1111117说明:“*”代表当日有不是决赛的比赛;数字代表当日有相应数量的决赛.(Ⅰ)(i)若在这两天每天随机观看一个比赛项目,求恰好看到冰壶和冰球的概率;-13- (ii)若在这两天每天随机观看一场决赛,求两场决赛恰好在同一赛区的概率;(Ⅱ)若在2月6日(星期日)的所有决赛中观看三场,记为赛区的个数,求的分布列及期望.19.(本小题共15分)已知函数.(Ⅰ)求曲线的斜率等于的切线方程;(Ⅱ)求函数的极值;(Ⅲ)设,判断函数的零点个数,并说明理由.20.(本小题共15分)已知椭圆经过点,离心率.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设是经过椭圆右焦点的一条弦(不经过点且在的上方),直线与直线相交于点M,记PA,PB,PM的斜率分别为,,,将、、如何排列能构成一个等差数列,证明你的结论.21.(本小题共14分)若无穷数列满足:,对于,都有(其中为常数),则称具有性质“”.(Ⅰ)若具有性质“”,且,,求;(Ⅱ)若无穷数列是等差数列,无穷数列是公比为的等比数列,,,,判断是否具有性质“”,并说明理由;(Ⅲ)设既具有性质“”,又具有性质“”,其中,,求证:-13- 具有性质“”.(考生务必将答案答在答题卡上,在试卷上作答无效)延庆区2020—2021学年度高三数学模拟试卷参考答案阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。2.其它正确解法可以参照评分标准按相应步骤给分。一、选择题共10小题,每小题4分,共40分。题号12345678910答案DBBAABABAD二、填空题共5小题,每小题5分,共25分。题号1112131415答案②③注:第15题全部选对得5分,不选或有错选得分,其他得3分。三、解答题共6小题,共85分。16解:(Ⅰ)选择①:因为…………2分所以,其中,…………3分所以,又因为,所以.…………5分选择②:,所以.…………5分(①不写不扣分,②每个值计算正确各给一分)-13- (Ⅱ)因为…………7分所以…………9分则,…………11分,…………12分所以函数的单调增区间为…………13分(一个都没写的扣一分)17.(Ⅰ)证明:连结.因为M,E分别为的中点,所以,且.又因为N为的中点,所以.…………2分由题设知,可得,故,因此四边形MNDE为平行四边形,.又平面,所以MN∥平面.…………5分(Ⅱ)因为底面是正方形,所以,又因为侧面底面,且侧面底面,所以,所以,,又因为侧面为矩形,所以,如图建立空间直角坐标系,…………7分其中,,,,且,,…………8分-13- 因为,所以,故,…10分设为平面的法向量,则即,不妨设,可得.…………12分所以,…………13分因为二面角的平面角是钝角,所以二面角的余弦值.…………14分18.解:(Ⅰ)(i)记“在这两天每天随机观看一个项目,恰好看到冰壶冰球”为事件.由表可知,在这两天每天随机观看一个项目,共有种不同方法,其中恰好看到冰壶冰球,共有种不同方法.所以,.…3分(ii)记“在这两天每天随机观看一场决赛,两场决赛恰好在同一赛区”为事件.由表可知,在这两天每天随机观看一场决赛共有种不同方法,其中两场决赛恰好在北京赛区-13- 共有种不同方法,在张家口赛区共有.所以.6分(Ⅱ)随机变量的所有可能取值为.…7分根据题意,,…9分,…11分.…13分随机变量的分布列是:数学期望.…………………………14分19.解:(Ⅰ)设切点为,因为,……………….1分所以,,,……………….3分所以切线方程为,即.……………….4分-13- (Ⅱ)的定义域为……………….5分令即,,.……………….6分令,得,令,得,故在上单调递减,在上单调递增,.……………….8分所以存在极小值,无极大值..……………….10分(Ⅲ)函数有三个零点,理由如下:.………….11分由(Ⅱ)知在上单调递减,在上单调递增,……………….12分由且,,所以存在唯一,使得,……………….13分又因为,……………….14分,……………….15分且三个零点互不相同,所以函数有三个零点.20.解:(Ⅰ)由点在椭圆上得,①,……………….1分②……………….2分由①②得,……………….4分-13- 故椭圆的标准方程为……………….5分(Ⅱ)或能构成一个等差数列…………….6分椭圆右焦点坐标,显然直线斜率存在,设③…………….7分代入椭圆方程,整理得,易知….8分设,则有④……………….10分在方程③中,令,得,从而,………….11分因为=⑤,将④代入⑤得………….13分而,所以,即为、的等差中项,14分-13- 所以或为等差数列。……………….15分21解:(Ⅰ)因为具有性质“”,所以,.……1分由,得,由,得...………………3分因为,所以,即..………………4分(Ⅱ)不具有性质“”...………………5分由等比数列的公比为,由,得,故…………6分设等差数列的公差为,由,,得,由,所以,故...………………7分所以.若具有性质“”,则,.因为,,所以,故不具有性质“”…9分(Ⅲ)因为具有性质“”,所以,.①因为具有性质“”,所以,.②因为,,所以由①得;由②,得,……10分所以,即...………………11分由①②,得,,……………12分所以,,..………………13分-13- 所以具有性质“”.………………14分-13-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
北京市延庆区2021届高三第一次模拟考试英语试题 Word版含答案
北京市延庆区2021届高三下学期高考模拟英语试卷 Word版含答案
北京市延庆区2021届高三第一次模拟考试物理试题 Word版含答案
北京市延庆区2021届高三第一次模拟考试化学试题 Word版含答案
北京市延庆区2021届高三第一次模拟考试历史试题 Word版含答案
北京市延庆区2021届高三第一次模拟考试地理试题 Word版含答案
北京市延庆区2022届高三地理下学期第一次质量监测(一模)试题(Word版附答案)
北京市延庆区2022届高三物理下学期第一次质量监测(一模)试题(Word版附答案)
北京市延庆区2022届高三政治下学期第一次质量监测(一模)试题(Word版附答案)
北京市延庆区2022届高三化学下学期第一次质量监测(一模)试题(Word版附答案)
文档下载
收藏
所属:
高中 - 数学
发布时间:2021-10-09 22:49:06
页数:13
价格:¥3
大小:659.70 KB
文章作者:fenxiang
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划