2022版高考数学二轮复习专题七解析几何专题对点练23圆锥曲线中的最值范围证明问题文
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
专题对点练23 圆锥曲线中的最值、范围、证明问题1.(2022全国Ⅰ,文20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.2.已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为32.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4∶5.3.已知抛物线x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与抛物线的交点为Q,且|QF|=|PQ|.(1)求抛物线的方程;(2)如图所示,过F的直线l与抛物线相交于A,D两点,与圆x2+(y-1)2=1相交于B,C两点(A,B两点相邻),过A,D两点分别作抛物线的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.5\n4.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右交点分别为F1,F2,且|F1F2|=43,A3,-132是椭圆上一点.(1)求椭圆C的标准方程和离心率e的值;(2)若T为椭圆C上异于顶点的任意一点,M,N分别为椭圆的右顶点和上顶点,直线TM与y轴交于点P,直线TN与x轴交于点Q,求证:|PN|·|QM|为定值.5.已知圆O:x2+y2=r2,直线x+22y+2=0与圆O相切,且直线l:y=kx+m与椭圆C:x22+y2=1相交于P,Q两点,O为坐标原点.(1)若直线l过椭圆C的左焦点,且与圆O交于A,B两点,且∠AOB=60°,求直线l的方程;(2)如图,若△POQ的重心恰好在圆上,求m的取值范围.6.已知椭圆C与双曲线y2-x2=1有共同焦点,且离心率为63.(1)求椭圆C的标准方程;(2)若A为椭圆C的下顶点,M,N为椭圆C上异于A的两点,直线AM与AN的斜率之积为1.①求证:直线MN恒过定点,并求出该定点坐标;②若O为坐标原点,求OM·ON的取值范围.7.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上位于第一象限的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D.(1)若当点A的横坐标为3,且△ADF为等边三角形时,求C的方程;(2)对于(1)中求出的抛物线C,若点D(x0,0)x0≥12,记点B关于x轴的对称点为E,AE交x轴于点P,且AP⊥BP,求证:点P的坐标为(-x0,0),并求点P到直线AB的距离d的取值范围.5\n专题对点练23答案1.(1)解当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,-2).所以直线BM的方程为y=x+1或y=-x-1.(2)证明当l与x轴垂直时,AB为MN的垂直平分线,所以∠ABM=∠ABN.当l与x轴不垂直时,设l的方程为y=k(x-2)(k≠0),M(x1,y1),N(x2,y2),则x1>0,x2>0.由y=k(x-2),y2=2x得ky2-2y-4k=0,可知y1+y2=,y1y2=-4.直线BM,BN的斜率之和为kBM+kBN=y1x1+2+y2x2+2=x2y1+x1y2+2(y1+y2)(x1+2)(x2+2).①将x1=y1k+2,x2=y2k+2及y1+y2,y1y2的表达式代入①式分子,可得x2y1+x1y2+2(y1+y2)=2y1y2+4k(y1+y2)k=-8+8k=0.所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以∠ABM=∠ABN.综上,∠ABM=∠ABN.2.(1)解设椭圆C的方程为x2a2+y2b2=1(a>b>0).由题意得a=2,ca=32,解得c=3.所以b2=a2-c2=1.所以椭圆C的方程为x24+y2=1.(2)证明设M(m,n),则D(m,0),N(m,-n).由题设知m≠±2,且n≠0.直线AM的斜率kAM=nm+2,故直线DE的斜率kDE=-m+2n.所以直线DE的方程为y=-m+2n(x-m),直线BN的方程为y=n2-m(x-2).联立y=-m+2n(x-m),y=n2-m(x-2),解得点E的纵坐标yE=-n(4-m2)4-m2+n2.由点M在椭圆C上,得4-m2=4n2.所以yE=-n.又S△BDE=|BD|·|yE|=|BD|·|n|,S△BDN=|BD|·|n|,所以△BDE与△BDN的面积之比为4∶5.3.解(1)由题意可知P(4,0),Q4,8p,|QF|=8p+p2,由|QF|=|PQ|,则8p+p2=54×8p,解得p=2,∴抛物线的方程为x2=4y.(2)设l:y=kx+1,A(x1,y1),D(x2,y2),联立y=kx+1,x2=4y,整理得x2-4kx-4=0,则x1x2=-4,由y=x2,求导y'=,直线MA:y-x124=x12(x-x1),即y=x12x-x124,同理求得MD:y=x22x-x224,联立y=x1x2-x124,y=x2x2-x224,解得x=2k,y=-1,则M(2k,-1),∴M到l的距离d=2k2+21+k2=21+k2,5\n∴△ABM与△CDM的面积之积S△ABM·S△CDM=|AB||CD|·d2=(|AF|-1)(|DF|-1)·d2=y1y2d2=14·x12x2216·d2=1+k2≥1,当且仅当k=0时取等号,当k=0时,△ABM与△CDM的面积之积取最小值1.4.(1)解由已知得c=23,F1(-23,0),F2(23,0),∴2a=|AF1|+|AF2|=(3+23)2+-1322+(3-23)2+-1322=8.∴a=4,∴b2=a2-c2=4,e=ca=12.∴椭圆C的标准方程为x216+y24=1,e=.(2)证明T(x0,y0)(x0≠0,y0≠0),则x0216+y024=1.M(4,0),N(0,2),∴直线TN的方程为y-2=y0-2x0x,令y=0,得Q-2x0y0-2,0,直线TM的方程为y=y0x0-4(x-4),令x=0,得P0,-4y0x0-4.则|MQ|=4+2x0y0-2=2x0+4y0-8y0-2,则|PN|=2+4y0x0-4=2x0+4y0-8x0-4.|QM|·|PN|=4(x0+2y0-4)2(y0-2)(x0-4)=16(x0y0-2x0-4y0+8)x0y0-2x0-4y0+8=16,∴|PN|·|QM|为定值16.5.解(1)∵直线x+22y+2=0与圆O:x2+y2=r2相切,∴r=|0+0+2|12+(22)2=23,∴x2+y2=.∵左焦点坐标为F(-1,0),设直线l的方程为y=k(x+1),由∠AOB=60°,得圆心O到直线l的距离d=33.又d=|k|k2+1,∴|k|k2+1=13,解得k=±22,∴直线l的方程为y=±22(x+1).(2)设P(x1,y1),Q(x2,y2),由x22+y2=1,y=kx+m得(1+2k2)x2+4kmx+2m2-2=0.由Δ>0,得2k2+1>m2,(※)且x1+x2=-4km1+2k2.由△POQ重心x1+x23,y1+y23恰好在圆x2+y2=49上,得(x1+x2)2+(y1+y2)2=4,即(x1+x2)2+[k(x1+x2)+2m]2=4,即(1+k2)(x1+x2)2+4km(x1+x2)+4m2=4.∴16(1+k2)k2m2(1+2k2)2-16k2m21+2k2+4m2=4,化简得m2=(1+2k2)24k2+1,代入(※)得k≠0.又m2=(1+2k2)24k2+1=1+4k44k2+1=1+44k2+1k4.由k≠0,得1k2>0,∴4k2+1k4>0,∴m2>1,得m的取值范围为m<-1或m>1.6.解(1)设椭圆C的标准方程为y2a2+x2b2=1(a>b>0),由题意可得a2-b2=2,e=ca=63,c=2,解得a=3,b=1,5\n即有椭圆的标准方程为y23+x2=1;(2)①证明:设M(x1,y1),N(x2,y2),由A(0,-3),直线AM与AN的斜率之积为1,可得y1+3x1·y2+3x2=1,即有x1x2=y1y2+3(y1+y2)+3,由题意可知直线MN的斜率存在且不为0,设直线MN:y=kx+t,代入椭圆方程,可得(3+k2)x2+2ktx+t2-3=0,可得x1x2=t2-33+k2,x1+x2=-2kt3+k2,y1+y2=k(x1+x2)+2t=2t-2k2t3+k2=6t3+k2,y1y2=k2x1x2+kt(x1+x2)+t2=k2·t2-33+k2+kt-2kt3+k2+t2=3t2-3k23+k2,则t2-33+k2=3t2-3k23+k2+36t3+k2+3,化为t2+33t+6=0,解得t=-23(-3舍去),则直线MN的方程为y=kx-23,即直线MN恒过定点,该定点坐标为(0,-23);②由①可得OM·ON=x1x2+y1y2=t2-33+k2+3t2-3k23+k2=4t2-3-3k23+k2=45-3k23+k2,由(3+k2)x2+2ktx+t2-3=0,可得Δ=4k2t2-4(t2-3)(3+k2)=48k2-36(3+k2)>0,解得k2>9.令3+k2=m,则m>12,且k2=m-3,即有45-3k23+k2=45-3(m-3)m=54m-3,由m>12,可得-3<54m-3<.则OM·ON的取值范围是-3,32.7.解(1)由题知Fp2,0,|FA|=3+,则D(3+p,0),FD的中点坐标为32+3p4,0,则32+3p4=3,解得p=2,故C的方程为y2=4x.(2)依题可设直线AB的方程为x=my+x0(m≠0),A(x1,y1),B(x2,y2),则E(x2,-y2),由y2=4x,x=my+x0消去x,得y2-4my-4x0=0.∵x0≥,∴Δ=16m2+16x0>0,y1+y2=4m,y1y2=-4x0,设P的坐标为(xP,0),则PE=(x2-xP,-y2),PA=(x1-xP,y1),由题知PE∥PA,所以(x2-xP)y1+y2(x1-xP)=0,即x2y1+y2x1=(y1+y2)xP=y22y1+y12y24=y1y2(y1+y2)4,显然y1+y2=4m≠0,所以xP=y1y24=-x0,即证xP(-x0,0).由题知△EPB为等腰直角三角形,所以kAP=1,即y1+y2x1-x2=1,也即y1+y214(y12-y22)=1,所以y1-y2=4,∴(y1+y2)2-4y1y2=16,即16m2+16x0=16,m2=1-x0,x0<1,又因为x0≥,所以≤x0<1,d=|-x0-x0|1+m2=2x01+m2=2x02-x0,令2-x0=t∈1,62,x0=2-t2,d=2(2-t2)t=4t-2t,易知f(t)=-2t在1,62上是减函数,所以d∈63,2.5
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)