【科学备考】(新课标)2022高考数学二轮复习 第十二章 概率与统计 随机事件及其概率 理(含2022试题)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
【科学备考】(新课标)2022高考数学二轮复习第十二章概率与统计随机事件及其概率理(含2022试题)理数1.(2022湖北黄冈市高三三月质量检测,11,5分)某校共有学生1000名,其中高一年级有380人,高二年级男生有180人,已知在全校学生中制抽取1名,抽到高二年级的女生的概率为0.19,现采取分层抽样(按年级分层)在全校抽取100人,则应在高三年级抽取的人数是 .[答案]1.25 [解析]1. 由题意,高二年级的女生的人数为,故高二年级的学生数为;故高三年级的学生数为.故应在高三年级抽取的人数是.2.(2022江西,21,14分)随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A,B两组,每组n个数.A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2.记ξ=a2-a1,η=b2-b1.(1)当n=3时,求ξ的分布列和数学期望;(2)令C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);(3)对(2)中的事件C,表示C的对立事件,判断P(C)和P()的大小关系,并说明理由.[答案]2.查看解析[解析]2.(1)当n=3时,ξ的所有可能取值为2,3,4,5.将6个正整数平均分成A,B两组,不同的分组方法共有=20种,所以ξ的分布列为ξ2345PEξ=2×+3×+4×+5×=.(2)ξ和η恰好相等的所有可能取值为n-1,n,n+1,…,2n-2.又ξ和η恰好相等且等于n-1时,不同的分组方法有2种;ξ和η恰好相等且等于n时,不同的分组方法有2种;ξ和η恰好相等且等于n+k(k=1,2,…,n-2)(n≥3)时,不同的分组方法有2种,所以当n=2时,P(C)==,8\n(3)由(2)知当n=2时,P()=,因此P(C)>P(),而当n≥3时,P(C)<P().理由如下:①用数学归纳法来证明:1°当n=3时,①式左边=4×(2+)=4×(2+2)=16,①式右边==20,所以①式成立.那么,当n=m+1时,即当n=m+1时①式也成立.综合1°,2°得,对于n≥3的所有正整数,都有P(C)<P()成立.3.(2022湖北,20,12分)计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(Ⅰ)求未来4年中,至多有1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X40<X<8080≤X≤120X>120发电机最多可运行台数123若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?[答案]3.查看解析[解析]3.(Ⅰ)依题意,p1=P(40<X<80)==0.2,p2=P(80≤X≤120)==0.7,p3=P(X>120)==0.1.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为p=(1-p3)4+(1-p3)3p3=+4××=0.9477.8\n(Ⅱ)记水电站年总利润为Y(单位:万元).(1)安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.(2)安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5000×2=10000,因此P(Y=10000)=P(X≥80)=p2+p3=0.8;由此得Y的分布列如下:Y420010000P0.20.8所以,E(Y)=4200×0.2+10000×0.8=8840.(3)安装3台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=3400)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=5000×2-800=9200,因此P(Y=9200)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,此时Y=5000×3=15000,因此P(Y=15000)=P(X>120)=p3=0.1,由此得Y的分布列如下:Y3400920015000P0.20.70.1所以,E(Y)=3400×0.2+9200×0.7+15000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.4.(2022陕西,19,12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概 率0.50.5作物市场价格(元/kg)610概 率0.40.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.[答案]4.查看解析[解析]4.(Ⅰ)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格-成本,∴X所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800.P(X=4000)=P()P()=(1-0.5)×(1-0.4)=0.3,P(X=2000)=P()P(B)+P(A)P()=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为X40002000800P0.30.50.28\n(Ⅱ)设Ci表示事件“第i季利润不少于2000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(Ⅰ)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2000元的概率为P(C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896.5.(2022江西红色六校高三第二次联考理数试题,17)某企业招聘工作人员,设置、、三组测试项目供参考人员选择,甲、乙、丙、丁、戊五人参加招聘,其中甲、乙两人各自独立参加组测试,丙、丁两人各自独立参加组测试.已知甲、乙两人各自通过测试的概率均为,丙、丁两人各自通过测试的概率均为.戊参加组测试,组共有6道试题,戊会其中4题.戊只能且必须选择4题作答,至少答对3题则竞聘成功.(Ⅰ)求戊竞聘成功的概率;(Ⅱ)求参加组测试通过的人数多于参加组测试通过的人数的概率;(Ⅲ)记、组测试通过的总人数为,求的分布列和期望.[答案]5.查看解析[解析]5. (I)设戊竞聘成功为A事件,则 …………3分(Ⅱ)设“参加组测试通过的人数多于参加组测试通过的人数”为B事件 …………6分(Ⅲ)可取0,1,2,3,4012348\nP …………12分6. (2022吉林高中毕业班上学期期末复习检测,19)某河流上的一座水利发电站,每年六月份的发电量(单位:万千瓦时)与该河流上游在六月份的降雨量(单位:毫米)有关.据统计,当时,;每增加10,增加5.已知近20年的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (Ⅰ)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率 (Ⅱ)求近20年降雨量的中位数和平均降雨量; (Ⅲ)假定2022年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求2022年六月份该水力发电站的发电量不低于520(万千瓦时)的概率.[答案]6.查看解析[解析]6. 解析(Ⅰ)由题意,当降雨量为110时,其频率为,当降雨量为140时,其频率为,当降雨量为200时,其频率为. (2分) (Ⅱ)把20个数从小到大排列后,中间两个数都是160,故中位数是160. 平均降雨量.(6分) (Ⅲ)由已知可设,因为,时,所以,所以, (9分)当时,.所以,发电量不低于520(万千瓦时)包含降雨量200和220两类,它们彼此互斥,所以,发电量低于520(万千瓦时)的概率. (12分) 法二:(“发电量不低于520万千瓦时”),即,故今年六月份该水利发电站的发电量不低于520(万千瓦时)的概率为. (12分8\n7.(2022北京,16,13分)下图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)[答案]7.设Ai表示事件“此人于3月i日到达该市”(i=1,2,…,13).根据题意,P(Ai)=,且Ai∩Aj=⌀(i≠j).(Ⅰ)设B为事件“此人到达当日空气重度污染”,则B=A5∪A8.所以P(B)=P(A5∪A8)=P(A5)+P(A8)=.(Ⅱ)由题意可知,X的所有可能取值为0,1,2,且P(X=1)=P(A3∪A6∪A7∪A11)=P(A3)+P(A6)+P(A7)+P(A11)=,P(X=2)=P(A1∪A2∪A12∪A13)=P(A1)+P(A2)+P(A12)+P(A13)=,P(X=0)=1-P(X=1)-P(X=2)=.所以X的分布列为X012P故X的期望EX=0×+1×+2×=.(Ⅲ)从3月5日开始连续三天的空气质量指数方差最大.7.8.(2022课标Ⅱ,19,12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.8\n(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望.[答案]8.(Ⅰ)当X∈[100,130)时,T=500X-300(130-X)=800X-39000,当X∈[130,150]时,T=500×130=65000.所以T=(Ⅱ)由(Ⅰ)知利润T不少于57000元当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57000元的概率的估计值为0.7.(Ⅲ)依题意可得T的分布列为T45000530006100065000P0.10.20.30.4所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.8.9.(2022课标Ⅰ,19,12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.[答案]9.(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=×+×=.(Ⅱ)X可能的取值为400,500,800,并且P(X=400)=1--=,P(X=500)=,P(X=800)=.8\n所以X的分布列为X400500800PEX=400×+500×+800×=506.25.9.8
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)