首页

江苏专用2022高考数学二轮复习专题四立体几何考点整合理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/13

2/13

剩余11页未读,查看更多内容需下载

【创新设计】(江苏专用)2022高考数学二轮复习专题四立体几何考点整合理立体几何高考定位 高考对本内容的考查主要有:(1)空间概念,空间想象能力,点线面位置关系判断,表面积与体积计算等,A级要求;(2)线线、线面、面面平行与垂直的证明,B级要求;证明或探究空间中线线、线面、面面平行与垂直的位置关系,一要熟练掌握所有判定定理与性质定理,梳理好几种位置关系的常见证明方法,如证明线面平行,既可以构造线线平行,也可以构造面面平行.而证明线线平行常用的是三角形中位线性质,或构造平行四边形;二要用分析与综合相结合的方法来寻找证明的思路;三要注意表述规范,推理严谨,避免使用一些虽然正确但不能作为推理依据的结论.真题感悟1.(2022·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析 设新的底面半径为r,由题意得πr2·4+πr2·8=π×52×4+π×22×8,解得r=.答案 2.(2022·江苏卷)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明 (1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.13\n又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.考点整合1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2.空间几何体的两组常用公式(1)柱体、锥体、台体的侧面积公式:①S柱侧=ch(c为底面周长,h为高);②S锥侧=ch′(c为底面周长,h′为斜高);③S台侧=(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高);④S球表=4πR2(R为球的半径).13\n(2)柱体、锥体和球的体积公式:①V柱体=Sh(S为底面面积,h为高);②V锥体=Sh(S为底面面积,h为高);③V台=(S++S′)h(不要求记忆);④V球=πR3.3.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.4.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点一 空间几何体的表面积与体积的计算问题【例1】(1)(2022·江苏卷)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2.若它们的侧面积相等,且=,则的值是________.(2)(2022·江苏卷)如图,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为________cm3.解析 (1)设两个圆柱的底面半径和高分别为r1,r2和h1,h2,由=,得=,则=.由圆柱的侧面积相等,得2πr1h1=2πr2h2,即r1h1=r2h2,则=,所以==.(2)关键是求出四棱锥ABB1D1D的高,连接AC交BD于O,在长方体中,13\n∵AB=AD=3,∴BD=3且AC⊥BD.又∵BB1⊥底面ABCD,∴BB1⊥AC.又DB∩BB1=B,∴AC⊥平面BB1D1D,∴AO为四棱锥ABB1D1D的高且AO=BD=.∵S矩形BB1D1D=BD×BB1=3×2=6,∴VABB1D1D=S矩形BB1D1D·AO=×6×=6(cm3).答案 (1) (2)6探究提高 涉及柱、锥、台、球及其简单组合体的侧面积和体积的计算问题,要在正确理解概念的基础上,画出符合题意的图形或辅助线(面),分析几何体的结构特征,选择合适的公式,进行计算.另外要重视空间问题平面化的思想和割补法、等积转换法的运用.【训练1】(1)(2022·苏、锡、常、镇调研)如图,正方体ABCDA1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1EDF的体积为________.(2)(2022·江苏卷)如图,在三棱柱A1B1C1ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥FADE的体积为V1,三棱柱A1B1C1ABC的体积为V2,则V1∶V2=______.解析 (1)利用三棱锥的体积公式直接求解.VD1EDF=VFDD1E=S△D1DE·AB=××1×1×1=.另解(特殊点法):让E点和A点重合,点F与点C重合,则VD1EDF=×S△ACD×D1D=××1×1×1=.(2)设三棱锥FADE的高为h,则=13\n=.答案 (1) (2)1∶24热点二 空间中点线面位置关系的判断问题【例2】(2022·安徽卷改编)已知m,n是两条不同直线,α,β是两个不同平面,给出以下命题:①若α,β垂直于同一平面,则α与β平行;②若m,n平行于同一平面,则m与n平行;③若α,β不平行,则在α内不存在与β平行的直线;④若m,n不平行,则m与n不可能垂直于同一平面.则上述命题错误的是________(填序号).解析 对于①,α,β垂直于同一平面,α,β关系不确定,①错;对于②,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故②错;对于③,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故③错;对于④,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为④选项,故④正确.答案 ①②③探究提高 长方体(或正方体)是一类特殊的几何体,其中蕴含着丰富的空间位置关系.因此,对于某些研究空间直线与直线、直线与平面、平面与平面之间的平行、垂直关系问题,常构造长方体(或正方体),把点、线、面的位置关系转移到长方体(或正方体)中,对各条件进行检验或推理,根据条件在某一特殊情况下不真,则它在一般情况下也不真的原理,判断条件的真伪,可使此类问题迅速获解.【训练2】设l是直线,α,β是两个不同的平面,①若l∥α,l∥β,则α∥β;②若l∥α,l⊥β,则α⊥β;③若α⊥β,l⊥α,则l⊥β;④若α⊥β,l∥α,则l⊥β.则上述命题中正确的是________.解析 利用线与面、面与面的关系定理判定,用特例法.设α∩β=a,若直线l∥a,且l⊄α,l⊄β,则l∥α,l∥β,因此α不一定平行于β,故①错误;由于l∥α,故在α内存在直线l′∥l,又因为l⊥β,所以l′⊥β,故α⊥β,所以②正确;若α⊥β,在β内作交线的垂线l,则l⊥α,此时l在平面β内,因此③错误;已知α⊥β,若α∩β=a,l∥a,且l不在平面α,β内,则l∥α且l∥β,因此④错误.答案 ②热点三 线线、线面、面面平行与垂直的证明问题13\n【例3】(2022·江苏卷)如图,在三棱锥PABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.证明 (1)因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC.探究提高 垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.【训练3】(2022·江苏卷)如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过点A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.13\n证明 (1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC.因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF⊂平面SAB,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.1.求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.(4)注意几何体的表面积与侧面积的区别,侧面积只是表面积的一部分,不包括底面积,而表面积包括底面积和侧面积.2.球的简单组合体中几何体度量之间的关系,如棱长为a的正方体的外接球、内切球、棱切球的半径分别为a,,a.3.锥体体积公式为V=Sh,在求解锥体体积中,不能漏掉.4.空间中点、线、面的位置关系的判定(1)可以从线、面的概念、定理出发,学会找特例、反例.(2)可以借助长方体,在理解空间点、线、面位置关系的基础上,抽象出空间线、面的位置关系的定义.5.垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换:三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.6.在应用直线和平面平行的性质定理时,要防止出现“13\n一条直线平行于一个平面就平行于这个平面内的所有直线”的错误.一、填空题1.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为________.解析 利用圆柱的侧面积公式求解,该圆柱的侧面积为2π×1×2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+2π=6π.答案 6π2.(2022·苏、锡、常、镇调研)如图所示,ABCD是正方形,PA⊥平面ABCD,E,F分别是AC,PC的中点,PA=2,AB=1,求三棱锥CPED的体积为________.解析 ∵PA⊥平面ABCD,∴PA是三棱锥PCED的高,PA=2.∵ABCD是正方形,E是AC的中点,∴△CED是等腰直角三角形.AB=1,故CE=ED=,S△CED=CE·ED=··=.故VCPED=VPCED=·S△CED·PA=··2=.答案 3.(2022·山东卷改编)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为________.解析 如图,由题意,得BC=2,AD=AB=1.绕AD所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V=π×12×2-π×12×1=π.13\n答案 4.(2022·苏、锡、常、镇调研)设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.解析 由线线、线面、面面平行与垂直的判定与性质定理逐个判断,真命题为②④.答案 ②④5.如图,正方体ABCDA1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.解析 ∵EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,∴EF∥AC,又∵E是AD的中点,∴F是CD的中点,即EF是△ACD的中位线,∴EF=AC=×2=.答案 6.(2022·全国Ⅰ卷改编)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有________斛(取整数).解析 由题意知:米堆的底面半径为(尺),体积V=×πR2·h=(立方尺).所以堆放的米大约为≈22(斛).13\n答案 227.(2022·南通模拟)已知m,n表示两条不同直线,α表示平面.给出以下说法:①若m∥α,n∥α,则m∥n;②若m⊥α,n⊂α,则m⊥n;③若m⊥α,m⊥n,则n∥α;④若m∥α,m⊥n,则n⊥α;则上述说法错误的是________(填序号).解析 法一 若m∥α,n∥α,则m,n可能平行、相交或异面,①错;若m⊥α,n⊂α,则m⊥n,因为直线与平面垂直时,它垂直于平面内任一直线,②正确;若m⊥α,m⊥n,则n∥α或n⊂α,③错;若m∥α,m⊥n,则n与α可能相交,可能平行,也可能n⊂α,④错.法二 如图,在正方体ABCDA′B′C′D′中,用平面ABCD表示α.①中,若m为A′B′,n为B′C′,满足m∥α,n∥α,但m与n是相交直线,故①错.②中,m⊥α,n⊂α,满足m⊥n,这是线面垂直的性质,故②正确,③中,若m为AA′,n为AB,满足m⊥α,m⊥n,但n⊂α,故③错.④中,若m为A′B′,n为B′C′,满足m∥α,m⊥n,但n∥α,故④错.答案 ①③④8.(2022·南师附中模拟)在正三棱锥PABC中,M,N分别是PB,PC的中点,若截面AMN⊥平面PBC,则此棱锥中侧面积与底面积的比为________.解析 如图,取BC的中点D,连接AD,PD,且PD与MN的交点为E,连接AE.因为AM=AN,E为MN的中点,所以AE⊥MN,又截面AMN⊥平面PBC,所以AE⊥平面PBC,则AE⊥PD,又E点是PD的中点,所以PA=AD.设正三棱锥PABC的底面边长为a,则侧棱长为a,斜高为a,则此棱锥中侧面积与底面积的比为=.13\n答案 二、解答题9.(2022·江苏卷)如图,在直三棱柱ABCA1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.证明 (1)因为ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC,又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1,又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.10.(2022·苏北四市调研)如图,在四棱锥PABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点.求证:13\n(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.证明 (1)因为平面PAD∩平面ABCD=AD.又平面PAD⊥平面ABCD,且PA⊥AD.所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,且四边形ABED为平行四边形.所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.又因为PA∩AD=A,所以CD⊥平面PAD,从而CD⊥PD,且CD⊂平面PCD,又E,F分别是CD和CP的中点,所以EF∥PD,故CD⊥EF.由EF,BE在平面BEF内,且EF∩BE=E,所以CD⊥平面BEF.所以平面BEF⊥平面PCD.11.(2022·常州监测)如图,在直三棱柱A1B1C1ABC中,AB⊥BC,E,F分别是A1B,AC1的中点.(1)求证:EF∥平面ABC;(2)求证:平面AEF⊥平面AA1B1B;(3)若A1A=2AB=2BC=2a,求三棱锥FABC的体积.(1)证明 如图连接A1C.13\n∵直三棱柱A1B1C1ABC中,AA1C1C是矩形.∴点F在A1C上,且为A1C的中点.在△A1BC中,∵E,F分别是A1B,A1C的中点,∴EF∥BC.又∵BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.(2)证明 ∵直三棱柱A1B1C1ABC中,B1B⊥平面ABC,∴B1B⊥BC.又∵EF∥BC,AB⊥BC,∴AB⊥EF,B1B⊥EF.∵B1B∩AB=B,∴EF⊥平面ABB1A1.∵EF⊂平面AEF,∴平面AEF⊥平面ABB1A1.(3)解 VFABC=VA1ABC=××S△ABC×AA1=××a2×2a=.13

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:24:57 页数:13
价格:¥3 大小:425.91 KB
文章作者:U-336598

推荐特供

MORE