浙江省磐安县高考数学试题分类专题汇编 圆锥曲线 新人教A版
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
高考数学试题分类汇编圆锥曲线一.选择题:1.(福建卷11)又曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为BA.(1,3)B.C.(3,+)D.2.(海南卷11)已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(A)A.(,-1)B.(,1)C.(1,2)D.(1,-2)3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点轨进入以月球球心为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在点第二次变轨进入仍以为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在点第三次变轨进入以为圆心的圆形轨道Ⅲ绕月飞行,若用和分别表示椭轨道Ⅰ和Ⅱ的焦距,用和分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①;②;③;④<.其中正确式子的序号是BA.①③ B.②③ C.①④ D.②④4.(湖南卷8)若双曲线(a>0,b>0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是(B)A.(1,2)B.(2,+)C.(1,5)D.(5,+)28\n5.(江西卷7)已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是CA.B.C.D.6.(辽宁卷10)已知点P是抛物线上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为(A)A.B.C.D.7.(全国二9)设,则双曲线的离心率的取值范围是(B)A.B.C.D.8.(山东卷(10)设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为A(A)(B)(C)(D)9.(陕西卷8)双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为(B)A.B.C.D.10.(四川卷12)已知抛物线的焦点为,准线与轴的交点为,点在28\n上且,则的面积为(B)(A) (B) (C) (D)11.(天津卷(7)设椭圆(,)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为B(A)(B) (C)(D)12.(浙江卷7)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是D(A)3(B)5(C)(D)13.(浙江卷10)如图,AB是平面的斜线段,A为斜足,若点P在平面内运动,使得△ABP的面积为定值,则动点P的轨迹是B(A)圆(B)椭圆(C)一条直线(D)两条平行直线14.(重庆卷(8)已知双曲线(a>0,b>0)的一条渐近线为y=kx(k>0),离心率e=,则双曲线方程为C(A)-=1(B)(C)(D)一.填空题:1.(海南卷14)过双曲线的右顶点为A,右焦点为F。过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为_______2.(湖南卷12)已知椭圆(a>b>0)的右焦点为F,右准线为,离心率e=28\n过顶点A(0,b)作AM,垂足为M,则直线FM的斜率等于.3.(江苏卷12)在平面直角坐标系中,椭圆1(0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率=.4.(江西卷15)过抛物线的焦点作倾角为的直线,与抛物线分别交于、两点(在轴左侧),则.5.(全国一14)已知抛物线的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.26.(全国一15)在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率.7.(全国二15)已知是抛物线的焦点,过且斜率为1的直线交于两点.设,则与的比值等于.8.(浙江卷12)已知为椭圆的两个焦点,过的直线交椭圆于A、B两点若,则=______________。8一.解答题:1.(安徽卷22).(本小题满分13分)设椭圆过点,且着焦点为(Ⅰ)求椭圆的方程;(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上解(1)由题意:28\n,解得,所求椭圆方程为(2)方法一设点Q、A、B的坐标分别为。由题设知均不为零,记,则且又A,P,B,Q四点共线,从而于是,,从而,(1),(2)又点A、B在椭圆C上,即(1)+(2)×2并结合(3),(4)得即点总在定直线上方法二设点,由题设,均不为零。且又四点共线,可设,于是(1)(2)由于在椭圆C上,将(1),(2)分别代入C的方程整理得(3)28\n(4)(4)-(3) 得即点总在定直线上2.(北京卷19).(本小题共14分)已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.(Ⅰ)当直线过点时,求直线的方程;(Ⅱ)当时,求菱形面积的最大值.解:(Ⅰ)由题意得直线的方程为.因为四边形为菱形,所以.于是可设直线的方程为.由得.因为在椭圆上,所以,解得.设两点坐标分别为,则,,,.所以.所以的中点坐标为.由四边形为菱形可知,点在直线上,所以,解得.所以直线的方程为,即.28\n(Ⅱ)因为四边形为菱形,且,所以.所以菱形的面积.由(Ⅰ)可得,所以.所以当时,菱形的面积取得最大值.3.(福建卷21)(本小题满分12分) 如图、椭圆的一个焦点是F(1,0),O为坐标原点. (Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有,求a的取值范围.本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.解法一:(Ⅰ)设M,N为短轴的两个三等分点,因为△MNF为正三角形,所以,即1=因此,椭圆方程为(Ⅱ)设(ⅰ)当直线AB与x轴重合时,28\n(ⅱ)当直线AB不与x轴重合时,设直线AB的方程为:整理得所以因为恒有,所以AOB恒为钝角.即恒成立.又a2+b2m2>0,所以-m2a2b2+b2-a2b2+a2<0对mR恒成立,即a2b2m2>a2-a2b2+b2对mR恒成立.当mR时,a2b2m2最小值为0,所以a2-a2b2+b2<0.a2<a2b2-b2,a2<(a2-1)b2=b4,因为a>0,b>0,所以a<b2,即a2-a-1>0,解得a>或a<(舍去),即a>,综合(i)(ii),a的取值范围为(,+).解法二:(Ⅰ)同解法一,(Ⅱ)解:(i)当直线l垂直于x轴时,x=1代入=1.因为恒有|OA|2+|OB|2<|AB|2,2(1+yA2)<4yA2,yA2>1,即>1,28\n解得a>或a<(舍去),即a>.(ii)当直线l不垂直于x轴时,设A(x1,y1),B(x2,y2).设直线AB的方程为y=k(x-1)代入得(b2+a2k2)x2-2a2k2x+a2k2-a2b2=0,故x1+x2=因为恒有|OA|2+|OB|2<|AB|2,所以x21+y21+x22+y22<(x2-x1)2+(y2-y1)2,得x1x2+y1y2<0恒成立.x1x2+y1y2=x1x2+k2(x1-1)(x2-1)=(1+k2)x1x2-k2(x1+x2)+k2=(1+k2).由题意得(a2-a2b2+b2)k2-a2b2<0对kR恒成立.①当a2-a2b2+b2>0时,不合题意;②当a2-a2b2+b2=0时,a=;③当a2-a2b2+b2<0时,a2-a2(a2-1)+(a2-1)<0,a4-3a2+1>0,解得a2>或a2>(舍去),a>,因此a.综合(i)(ii),a的取值范围为(,+).4.(广东卷18).(本小题满分14分)设,椭圆方程为,抛物线方程为.如图4所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).AyxOBGFF1图4【解析】(1)由得,28\n当得,G点的坐标为,,,过点G的切线方程为即,令得,点的坐标为,由椭圆方程得点的坐标为,即,即椭圆和抛物线的方程分别为和;(2)过作轴的垂线与抛物线只有一个交点,以为直角的只有一个,同理以为直角的只有一个。若以为直角,设点坐标为,、两点的坐标分别为和,。关于的二次方程有一大于零的解,有两解,即以为直角的有两个,因此抛物线上存在四个点使得为直角三角形。5.(湖北卷19).(本小题满分13分)如图,在以点为圆心,为直径的半圆中,,是半圆弧上一点,,曲线是满足为定值的动点的轨迹,且曲线过点.(Ⅰ)建立适当的平面直角坐标系,求曲线的方程;(Ⅱ)设过点的直线l与曲线相交于不同的两点、.若△的面积不小于,求直线斜率的取值范围.本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)(Ⅰ)解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(),依题意得|MA|-|MB|=|PA|-|PB|=<|AB|=4.28\n∴曲线C是以原点为中心,A、B为焦点的双曲线.设实平轴长为a,虚半轴长为b,半焦距为c,则c=2,2a=2,∴a2=2,b2=c2-a2=2.∴曲线C的方程为.解法2:同解法1建立平面直角坐标系,则依题意可得|MA|-|MB|=|PA|-|PB|<|AB|=4.∴曲线C是以原点为中心,A、B为焦点的双曲线.设双曲线的方程为>0,b>0).则由 解得a2=b2=2,∴曲线C的方程为(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0.∵直线l与双曲线C相交于不同的两点E、F,∴ ∴k∈(-,-1)∪(-1,1)∪(1,).设E(x,y),F(x2,y2),则由①式得x1+x2=,于是28\n|EF|==而原点O到直线l的距离d=,∴S△DEF=若△OEF面积不小于2,即S△OEF,则有③综合②、③知,直线l的斜率的取值范围为[-,-1]∪(1-,1)∪(1,).解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,得(1-k2)x2-4kx-6=0.∵直线l与双曲线C相交于不同的两点E、F,∴ .∴k∈(-,-1)∪(-1,1)∪(1,).设E(x1,y1),F(x2,y2),则由①式得|x1-x2|=③当E、F在同一去上时(如图1所示),S△OEF=当E、F在不同支上时(如图2所示).S△ODE=综上得S△OEF=于是由|OD|=2及③式,得S△OEF=28\n若△OEF面积不小于2 ④综合②、④知,直线l的斜率的取值范围为[-,-1]∪(-1,1)∪(1,).6.(湖南卷20).(本小题满分13分)若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.(I)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;(II)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.解:(I)设AB为点P(x0,0)的任意一条“相关弦”,且点A、B的坐标分别是(x1,y1)、(x2,y2)(x1x2),则y21=4x1,y22=4x2,两式相减得(y1+y2)(y1-y2)=4(x1-x2).因为x1x2,所以y1+y20.设直线AB的斜率是k,弦AB的中点是M(xm,ym),则k=.从而AB的垂直平分线l的方程为又点P(x0,0)在直线上,所以而于是故点P(x0,0)的所有“相关弦”的中点的横坐标都是x0-2.(Ⅱ)由(Ⅰ)知,弦AB所在直线的方程是,代入中,整理得(·)则是方程(·)的两个实根,且设点P的“相关弦”AB的弦长为l,则28\n因为0<<4xm=4(xm-2)=4x0-8,于是设t=,则t(0,4x0-8).记l2=g(t)=-[t-2(x0-3)]2+4(x0-1)2.若x0>3,则2(x0-3)(0,4x0-8),所以当t=2(x0-3),即=2(x0-3)时,l有最大值2(x0-1).若2<x0<3,则2(x0-3)0,g(t)在区间(0,4x0-8)上是减函数,所以0<l2<16(x0-2),l不存在最大值.综上所述,当x0>3时,点P(x0,0)的“相关弦”的弦长中存在最大值,且最大值为2(x0-1);当2<x03时,点P(x0,0)的“相关弦”的弦长中不存在最大值.7.(江西卷21).(本小题满分12分)设点在直线上,过点作双曲线的两条切线,切点为,定点.(1)求证:三点共线。(2)过点作直线的垂线,垂足为,试求的重心所在曲线方程.证明:(1)设,由已知得到,且,,设切线的方程为:由得从而,解得因此的方程为:同理的方程为:又在上,所以,即点都在直线上28\n又也在直线上,所以三点共线(2)垂线的方程为:,由得垂足,设重心所以解得由可得即为重心所在曲线方程8.(辽宁卷20).(本小题满分12分)在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.(Ⅰ)写出C的方程;(Ⅱ)若,求k的值;(Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||.20.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分.解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,故曲线C的方程为.3分(Ⅱ)设,其坐标满足28\n消去y并整理得,故.5分若,即.而,于是,化简得,所以.8分(Ⅲ).因为A在第一象限,故.由知,从而.又,故,即在题设条件下,恒有.12分9.(全国一21).(本小题满分12分)(注意:在试题卷上作答无效)双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点.已知成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.解:(Ⅰ)设,,由勾股定理可得:得:,,由倍角公式,解得,则离心率.28\n(Ⅱ)过直线方程为,与双曲线方程联立将,代入,化简有将数值代入,有,解得故所求的双曲线方程为。10.(全国二21).(本小题满分12分)设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.(Ⅰ)若,求的值;(Ⅱ)求四边形面积的最大值.(Ⅰ)解:依题设得椭圆的方程为,直线的方程分别为,.2分如图,设,其中,DFByxAOE且满足方程,故.①由知,得;由在上知,得.所以,化简得,28\n解得或.6分(Ⅱ)解法一:根据点到直线的距离公式和①式知,点到的距离分别为,.9分又,所以四边形的面积为,当,即当时,上式取等号.所以的最大值为.12分解法二:由题设,,.设,,由①得,,故四边形的面积为9分,当时,上式取等号.所以的最大值为.12分28\n11.(山东卷22)(本小题满分14分)如图,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.(Ⅰ)求证:A,M,B三点的横坐标成等差数列;(Ⅱ)已知当M点的坐标为(2,-2p)时,,求此时抛物线的方程;(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.(Ⅰ)证明:由题意设由得,则所以因此直线MA的方程为 直线MB的方程为所以①②由①、②得 因此 ,即所以A、M、B三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当x0=2时,将其代入①、②并整理得: 28\n 所以 x1、x2是方程的两根,因此又所以由弦长公式得 又,所以p=1或p=2,因此所求抛物线方程为或(Ⅲ)解:设D(x3,y3),由题意得C(x1+x2,y1+y2),则CD的中点坐标为 设直线AB的方程为 由点Q在直线AB上,并注意到点也在直线AB上, 代入得 若D(x3,y3)在抛物线上,则 因此 x3=0或x3=2x0.即D(0,0)或(1)当x0=0时,则,此时,点M(0,-2p)适合题意.(2)当,对于D(0,0),此时28\n 又AB⊥CD,所以即矛盾.对于因为此时直线CD平行于y轴,又所以 直线AB与直线CD不垂直,与题设矛盾,所以时,不存在符合题意的M点.综上所述,仅存在一点M(0,-2p)适合题意.12.(陕西卷20).(本小题满分12分)已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点.(Ⅰ)证明:抛物线在点处的切线与平行;(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.xAy112MNBO20.解法一:(Ⅰ)如图,设,,把代入得,由韦达定理得,,,点的坐标为.设抛物线在点处的切线的方程为,将代入上式得,直线与抛物线相切,,.28\n即.(Ⅱ)假设存在实数,使,则,又是的中点,.由(Ⅰ)知.轴,.又.,解得.即存在,使.解法二:(Ⅰ)如图,设,把代入得.由韦达定理得.,点的坐标为.,,抛物线在点处的切线的斜率为,.(Ⅱ)假设存在实数,使.由(Ⅰ)知,则28\n,,,解得.即存在,使.13.(四川卷21).(本小题满分12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,(Ⅰ)若,求的值;(Ⅱ)证明:当取最小值时,与共线。【解】:由与,得,的方程为设则由得①28\n(Ⅰ)由,得②③由①、②、③三式,消去,并求得故(Ⅱ)当且仅当或时,取最小值此时,故与共线。【点评】:此题重点考察椭圆中的基本量的关系,进而求椭圆待定常数,考察向量的综合应用;【突破】:熟悉椭圆各基本量间的关系,数形结合,熟练地进行向量的坐标运算,设而不求消元的思想在圆锥曲线问题中的灵活应用。14.(天津卷22)(本小题满分14分)已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以为斜率的直线与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.(22)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分.(Ⅰ)解:设双曲线的方程为().由题设得28\n,解得,所以双曲线方程为.(Ⅱ)解:设直线的方程为().点,的坐标满足方程组将①式代入②式,得,整理得.此方程有两个一等实根,于是,且.整理得. ③由根与系数的关系可知线段的中点坐标满足,.从而线段的垂直平分线方程为.此直线与轴,轴的交点坐标分别为,.由题设可得.整理得,.将上式代入③式得,整理得,.解得或.所以的取值范围是.15.(浙江卷20)(本题15分)已知曲线C是到点P()和到直线距离相等的点的轨迹。是过点Q(-1,0)的直线,M是C上(不在上)的动点;A、B在上,轴(如图)。(Ⅰ)求曲线C的方程;28\n(Ⅱ)求出直线的方程,使得为常数。本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(Ⅰ)解:设为上的点,则,到直线的距离为.由题设得.化简,得曲线的方程为.(Ⅱ)解法一:ABOQyxlM设,直线,则,从而.在中,因为,.所以.,.28\n当时,,从而所求直线方程为.解法二:设,直线,则,从而.过垂直于的直线.ABOQyxlMHl1因为,所以,.当时,,从而所求直线方程为.16.(重庆卷21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 如图(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:(Ⅰ)求点P的轨迹方程;(Ⅱ)若,求点P的坐标.解:(Ⅰ)由椭圆的定义,点P的轨迹是以M、N为焦点,长轴长2a=6的椭圆.因此半焦距c=2,长半轴a=3,从而短半轴b=,所以椭圆的方程为(Ⅱ)由得①因为不为椭圆长轴顶点,故P、M、N构成三角形.在△PMN28\n中,②将①代入②,得故点P在以M、N为焦点,实轴长为的双曲线上.由(Ⅰ)知,点P的坐标又满足,所以由方程组解得即P点坐标为28
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)