首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
高考数学例解等差数列的前n项和doc高中数学
高考数学例解等差数列的前n项和doc高中数学
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/15
2
/15
剩余13页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
【例1】等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.解依题意,得解得a1=113,d=-22.∴其通项公式为an=113+(n-1)·(-22)=-22n+135∴a6=-22×6+135=3说明此题上边给出的解法是先求出根本元素a1、d,再求其他的.这种先求出根本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出an而即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.15/15\n解由已知,第一个数列的通项为an=3n-1;第二个数列的通项为bN=5N-3假设am=bN,那么有3n-1=5N-3假设满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以N=1,4,7,…,40n=1,6,11,…,66∴两数列相同项的和为2+17+32+…+197=1393【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,那么a,b,c的值分别为[]A.1,3,5 B.1,3,7C.1,3,99 D.1,3,9又∵14=5a+3b,∴a=1,b=3∴首项为1,公差为215/15\n∴a50=c=1+(50-1)·2=99∴a=1,b=3,c=99【例4】在1和2之间插入2n个数,组成首项为1、末项为2的等差数列,假设这个数列的前半局部的和同后半局部的和之比为9∶13,求插入的数的个数.解依题意2=1+(2n+2-1)d ①由①,有(2n+1)d=1 ⑤15/15\n∴共插入10个数.【例5】在等差数列{an}中,设前m项和为Sm,前n项和为Sn,且Sm=Sn,m≠n,求Sm+n.且Sm=Sn,m≠n∴Sm+n=0【例6】已知等差数列{an}中,S3=21,S6=64,求数列{|an|}的前n项和Tn.d,已知S3和S6的值,解方程组可得a1与d,再对数列的前假设干项的正负性进展判断,那么可求出Tn来.15/15\n解方程组得:d=-2,a1=9∴an=9+(n-1)(n-2)=-2n+11其余各项为负.数列{an}的前n项和为:∴当n≤5时,Tn=-n2+10n当n>6时,Tn=S5+|Sn-S5|=S5-(Sn-S5)=2S5-Sn∴Tn=2(-25+50)-(-n2+10n)=n2-10n+50说明根据数列{an}中项的符号,运用分类讨论思想可求{|an|}的前n项和.【例7】在等差数列{an}中,已知a6+a9+a12+a15=34,求前20项之和.解法一由a6+a9+a12+a15=34得4a1+38d=3415/15\n=20a1+190d=5(4a1+38d)=5×34=170由等差数列的性质可得:a6+a15=a9+a12=a1+a20∴a1+a20=17S20=170【例8】已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,求它的前20项的和S20的值.解法一设等差数列{an}的公差为d,那么d>0,由已知可得由②,有a1=-2-4d,代入①,有d2=4再由d>0,得d=2∴a1=-10最后由等差数列的前n项和公式,可求得S20=180解法二由等差数列的性质可得:a4+a6=a3+a7即a3+a7=-4又a3·a7=-12,由韦达定理可知:a3,a7是方程x2+4x-12=0的二根15/15\n解方程可得x1=-6,x2=2∵d>0∴{an}是递增数列∴a3=-6,a7=2【例9】等差数列{an}、{bn}的前n项和分别为Sn和Tn,假设[]∵2a100=a1+a199,2b100=b1+b199解法二利用数列{an}为等差数列的充要条件:Sn=an2+bn15/15\n可设Sn=2n2k,Tn=n(3n+1)k说明该解法涉及数列{an}为等差数列的充要条件Sn=an2+bn,由k是常数,就不对了.【例10】解答以下各题:(1)已知:等差数列{an}中a2=3,a6=-17,求a9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{an}中,a4+a6+a15+a17=50,求S20;(4)已知:等差数列{an}中,an=33-3n,求Sn的最大值.分析与解答a9=a6+(9-6)d=-17+3×(-5)=-32(2)a1=19,an+2=89,Sn+2=135015/15\n(3)∵a4+a6+a15+a17=50又因它们的下标有4+17=6+15=21∴a4+a17=a6+a15=25(4)∵an=33-3n∴a1=30∵n∈N,∴当n=10或n=11时,Sn取最大值165.【例11】求证:前n项和为4n2+3n的数列是等差数列.证设这个数列的第n项为an,前n项和为Sn.当n≥2时,an=Sn-Sn-1∴an=(4n2+3n)-[4(n-1)2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知,对所有的自然数n,都有an=8n-115/15\n又an+1-an=[8(n+1)-1]-(8n-1)=8∴这个数列是首项为7,公差为8的等差数列.说明这里使用了“an=Sn-Sn-1”这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,Sn-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.【例12】证明:数列{an}的前n项之和Sn=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.由Sn=an2+bn,得当n≥2时,an=Sn-Sn-1=an2+bn-a(n-1)2-b(n-1)=2na+b-aa1=S1=a+b∴对于任何n∈N,an=2na+b-a且an-an-1=2na+(b-a)-2(n-1)a-b+a=2a(常数)∴{an}是等差数列.15/15\n假设{an}是等差数列,那么Sn=an2+bn综上所述,Sn=an2+bn是{an}成等差数列的充要条件.说明由此题的结果,进而可以得到下面的结论:前n项和为Sn=an2+bn+c的数列是等差数列的充分必要条件是c=0.事实上,设数列为{un},那么:【例13】等差数列{an}的前n项和Sn=m,前m项和Sm=n(m>n),求前m+n项和Sm+n.解法一设{an}的公差d按题意,那么有15/15\n=-(m+n)解法二设Sx=Ax2+Bx(x∈N)①-②,得A(m2-n2)+B(m-n)=n-m∵m≠n∴A(m+n)+B=-1故A(m+n)2+B(m+n)=-(m+n)即Sm+n=-(m+n)说明a1,d是等差数列的根本元素,通常是先求出根本元素,再解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设Sx=Ax2+Bx.(x∈N)15/15\n【例14】在项数为2n的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,那么n之值是多少?解∵S偶项-S奇项=nd∴nd=90-75=15又由a2n-a1=27,即(2n-1)d=27【例15】在等差数列{an}中,已知a1=25,S9=S17,问数列前多少项和最大,并求出最大值.解法一建立Sn关于n的函数,运用函数思想,求最大值.∵a1=25,S17=S9解得d=-2∴当n=13时,Sn最大,最大值S13=169解法二因为a1=25>0,d=-2<0,所以数列{an}是递减等∵a1=25,S9=S1715/15\n∴an=25+(n-1)(-2)=-2n+27即前13项和最大,由等差数列的前n项和公式可求得S13=169.解法三利用S9=S17寻找相邻项的关系.由题意S9=S17得a10+a11+a12+…+a17=0而a10+a17=a11+a16=a12+a15=a13+a14∴a13+a14=0,a13=-a14∴a13≥0,a14≤0∴S13=169最大.解法四根据等差数列前n项和的函数图像,确定取最大值时的n.∵{an}是等差数列∴可设Sn=An2+Bn二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示∵S9=S17,15/15\n∴取n=13时,S13=169最大15/15
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
苏教版必须5高一数学课件:等差数列的前n项和
(新课标)2022年高考数学 题型全归纳 等差数列的前n项和背景知识
高考数学例解等比数列的前n项和doc高中数学
高考数学例解等差数列doc高中数学
高考数学例解和差积商的导数doc高中数学
高考数学例解二项式定理doc高中数学
高考数学例解两平面垂直的判定和性质doc高中数学
高考数学例解doc高中数学
创新方案高考数学复习精编(人教新课标)52等差数列及其前n项和doc高中数学
【高考领航】2022高考数学总复习 5-2 等差数列及其前n项和练习 苏教版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 22:52:52
页数:15
价格:¥3
大小:47.90 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划