首页

高考物理提分特训专题培优第13讲带电粒子在磁场中的运动

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/15

2/15

剩余13页未读,查看更多内容需下载

第十三讲带电粒子在磁场中的运动带电粒子在匀强磁场中的圆周运动是高中物理的难点之一,也是高考的热点。解这类问题既要用到高中物理的洛伦兹力、圆周运动的知识,又要用到数学上的几何知识。通常需要数形结合思想。一、夯实基础知识1、洛仑兹力:磁场对运动电荷的作用力①洛伦兹力的公式:f=qvBsinθ,θ是V、B之间的夹角.②当带电粒子的运动方向与磁场方向互相平行时,F=0③当带电粒子的运动方向与磁场方向互相垂直时,f=qvB④只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0.2、洛伦兹力的方向①洛伦兹力F的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即F总是垂直于B和v所在的平面.②使用左手定则判定洛伦兹力方向时,伸出左手,让姆指跟四指垂直,且处于同一平面内,让磁感线穿过手心,四指指向正电荷运动方向(当是负电荷时,四指指向与电荷运动方向相反)则姆指所指方向就是该电荷所受洛伦兹力的方向.3、洛伦兹力与安培力的关系①洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向称动的自由电荷受到的洛伦兹力的宏观表现.②洛伦兹力一定不做功,它不改变运动电荷的速度大小;但安培力却可以做功.4、带电粒子在匀强磁场中的运动①不计重力的带电粒子在匀强磁场中的运动可分三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.②不计重力的带电粒子在匀强磁场中做匀速圆周运动的轨迹半径r=mv/qB;其运动周期T=2πm/qB(与速度大小无关).③不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:带电粒子垂直进入匀强电场,在电场中做匀变速曲线运动(类平抛运动);垂直进入匀强磁场,则做变加速曲线运动(匀速圆周运动).5.带电粒子在匀强磁场中的运动问题的分析思路①确定圆所在的平面及圆心位置。根据洛伦兹力F始终与速度v方向垂直这一特点,画出粒子运动轨迹上任两点(一般为粒子入射和出射时的两点)的洛伦兹力的方向(即垂直于这两点的速度方向),其延长线的交点即为圆心。②半径的计算。一方面可以由公式R=求得;另一方面也可以通过几何关系求得,主要是要看原题中所给的条件确定。③带电粒子在磁场中运动的时间的确定。利用圆心角与弦切角的关系或四边形的内角和计算出圆心角,再利用周期公式求出相应的时间。6.注意的问题:①注意圆周运动的对称的规律。如从同一边界射入磁场,又从同一边界射出,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。15\n②临界值(或极值)问题:刚好穿出磁场边界的条件是带电粒子是磁场中运动的轨迹与边界相切;当速度一定时,弧长(弦长)越长,则所对应的圆心角越大,带电粒子在磁场中的运动时间也就越长。题型1、确定带电粒子的带电性质和在磁场中的运动轨迹。确定带电粒子在磁场中运动的轨迹和电性,关键在于确定磁场的方向或粒子运动的轨迹偏转方向,同时要注意带电粒子的电性,然后根据左手定则判定。判定时要注意轨迹的曲率半径的变化,以确定其运动方向。例1、如图8-3-1所示,在阴极射线管的正下方平行放置一根通有强直流电流的长直导线,且电流的方向水平向右,则阴极射线将会()A.向上偏转B.向下偏转C.向纸内偏转D.向纸外偏转××××××××××××××××ab图2例2、一个带电粒子,沿垂直于磁场方向射入一匀强磁场,粒子的径迹如图2所示,径迹上的每一段都可以看做圆弧,由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变),从图中的情况可以确定()A.粒子从a到b,带正电B.粒子从b到a,带正电C.粒子从a到b,带负电D.粒子从b到a,带负电题型2:分析计算带电粒子在有界磁场中的运动问题。带电粒子在有界磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的三角函数、平面几何中的圆及解析几何知识。1.带电粒子在半无界磁场中的运动例3、(2022江苏)如图所示,MN是磁感应强度B匀强磁场的边界,一质量为m、电荷量为q粒子在纸面内从O点射入磁场,若粒子速度为v0,最远可落在边界上的A点,下列说法正确的有()A.若粒子落在A点的左侧,其速度一定小于v0B.若粒子落在A点的右侧,其速度一定大于v0C.若粒子落在A点左右两侧d的范围内,其速度不可能小于D.若粒子落在A点左右两侧d的范围内,其速度不可能大于例4、一个负离子,质量为m,电量大小为q,以速率V垂直于屏S经过小孔O射入存在着匀强磁场的真空室中(如图11).磁感应强度B的方向与离子的运动方向垂直,并垂直于图1中纸面向里.(1)求离子进入磁场后到达屏S上时的位置与O点的距离.OBSVθP图11(2)如果离子进入磁场后经过时间t到达位置P,证明:直线O与离子入射方向之间的夹角θ跟t的关系是。15\n例5、(2022重庆卷)如题21图所示,矩形MNPQ区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示。PMNQ题21图abc粒子编号质量电荷量(q>0)速度大小1m2qv22m-2q2v33m-3q3v42m2q3v52m-qv由以上信息可知,从图中a、b、c处进入的粒子对应表中的编号分别为()A.3、5、4B.4、2、5C.5、3、2D.2、4、52、带电粒子在圆形磁场中的运动MNO,LAO图13P例6、圆心为O、半径为r的圆形区域中有一个磁感强度为B、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L的O'处有一竖直放置的荧光屏MN,今有一质量为m的电子以速率v从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P点,如图13所示,求O'P的长度和电子通过磁场所用的时间。OabB例7.在真空中半径为r=3.0×10-2m的圆形区域内。有磁感应强度B=0.20T,方向垂直于纸面向外的匀强磁场。一带电粒子以速度v0=1.2×106m/s的初速度,从圆的直径ab的一个端点a射入圆形区域。已知该带电粒子的荷质比为q/m=108C/kg,不计重力。则粒子在该圆形区域内运动的时间最长为_____s,与此对应的在a点入射时的速度方向与直径ab的夹角应该是______。15\n例8、如图14所示,半径R=10cm的圆形区域边界跟y轴相切于坐标系原点O。磁感强度B=0.332T,方向垂直于纸面向里,在O处有一放射源S,可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子.已知α粒子的质量m=6.64×10-27kg,电量q=3.2×10-19C.(1)画出α粒子通过磁场空间做圆周运动的圆心的轨迹.(2)求出α粒子通过磁场空间的最大偏转角θ.yA图14xo(3)再以过O点并垂直纸面的直线为轴旋转磁场区域,能使穿过磁场区域且偏转角最大的α粒子射到正方向的y轴上,则圆形磁场直径OA至少应转过多大的角度β.3、带电粒子在长足够大的长方形磁场中的运动BABdv300O图15v例9、如图15所示,一束电子(电量为e)以速度V垂直射入磁感强度为B,宽度为d的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是,穿透磁场的时间是。例10、(2022浙江)如图所示,二块水平放置、相距为d的长金属板接在电压可调的电源上。两板之间的右侧区域存在方向垂直纸面向里的匀强磁场。将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m、水平速度均为v0、带相等电荷量的墨滴。调节电源电压至U,墨滴在电场区域恰能沿水平向右做匀速直线运动,进入电场、磁场共存区域后,最终垂直打在下板的M点。(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B的值;(3)现保持喷口方向不变,使其竖直下移到两板中间位置。为了使墨滴仍能到达下板M点应将磁感应强度调至B',则B'的大小为多少?15\n4、带电粒子在环状磁场中的运动图17例11、核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图17所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4×c/㎏,中空区域内带电粒子具有各个方向的速度。试计算(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。(2)所有粒子不能穿越磁场的最大速度。例12、(2022广东卷)如图19(a)所示,在以O为圆心,内外半径分别为R1和R2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,R1=R0,R2=3R0。一电荷量为+q,质量为m的粒子从内圆上的A点进入,不计重力。OOAAR1R2Cv0v1v2450(a)(b)图19⑴已知粒子从外圆上以速度v1射出,求粒子在A点的初速度v0的大小⑵若撤去电场,如图19(b)所示,已知粒子从OA延长线与外圆的交点C以速度v2射出,方向与OA延长线成450角,求磁感应强度的大小及粒子在磁场中运动的时间。⑶在图19(b)中,若粒子从A点进入磁场,速度大小为v3,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?15\n5、带电粒子在有“圆孔”的磁场中运动例13、如图22所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)abcdSo图226、带电粒子在相反方向的两个有界磁场中的运动例14、如图24所示,空间分布着有理想边界的匀强电场和匀强磁场。左侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域匀强磁场的磁感应强度大小为B,方向垂直纸面向里。一个质量为m、电量为q、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程。求:(1)中间磁场区域的宽度d;BBELdO图24(2)带电粒子从O点开始运动到第一次回到O点所用时间t.xyOa例15、两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示。在y>0,0<x<a的区域由垂直于纸面向里的\匀强磁场,在在y>0,x>a的区域由垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点处有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种数值。已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2∶5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中作圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。15\n题型3:动态圆思想分析临界或最值问题1.速度方向不变,但大小变化引起的放缩圆模型特征:带电粒子从某一点以速度方向不变而大小在改变(或质量改变)射入匀强磁场,在匀强磁场中做半径不断变化的匀速圆周运动。把其轨迹连续起来观察,好比一个与入射点相切并在放大(速度或质量逐渐增大时)或缩小(速度或质量逐渐减小时)的运动圆,如图8。解题时借助圆规多画出几个半径不同的圆,可方便发现粒子轨迹特点,达到快速解题的目的。llr1OV+qV图16例16、长为L的水平极板间,有垂直纸面向内的匀强磁场,如图16所示,磁感强度为B,板间距离也为L,板不带电,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度V水平射入磁场,欲使粒子不打在极板上,可采用的办法是()A.使粒子的速度V<BqL/4m;B.使粒子的速度V>5BqL/4m;C.使粒子的速度V>BqL/m;D.使粒子速度BqL/4m<V<5BqL/4m。例17、(2022广东卷)如图16(a)所示,左为某同学设想的粒子速度选择装置,由水平转轴及两个薄盘N1、N2构成,两盘面平行且与转轴垂直,相距为L,盘上各开一狭缝,两狭缝夹角可调(如图16(b));右为水平放置的长为d的感光板,板的正上方有一匀强磁场,方向垂直纸面向外,磁感应强度为B.一小束速度不同、带正电的粒子沿水平方向射入N1,能通过N2的粒子经O点垂直进入磁场。O到感光板的距离为d/2,粒子电荷量为q,质量为m,不计重力。(1)若两狭缝平行且盘静止(如图16(c)),某一粒子进入磁场后,竖直向下打在感光板中心点M上,求该粒子在磁场中运动的时间t;(2)若两狭缝夹角为,盘匀速转动,转动方向如图16(b).要使穿过N1、N2的粒子均打到感光板P1P2连线上。试分析盘转动角速度的取值范围(设通过N1的所有粒子在盘转一圈的时间内都能到达N2)。15\n2、速度大小不变,但速度方向变化引起的旋转圆图1v模型特征 :带电粒子从某一点以大小不变而方向不限定(如0—180°范围内)的速度射入匀强磁场中,这类问题都可以归结为旋转圆问题,把其轨迹连续起来观察可认为是一个半径不变的圆,根据速度方向的变化以出射点为旋转轴在旋转如图1。解题时使用圆规或硬币都可以快捷画出其轨迹,达到快速解答试题的目的。xyV0O图20例18、如图20所示,在xoy平面内有很多质量为m、电量为e的电子,从坐标原点O不断以相同的速率V0沿不同方向平行xoy平面射入第I象限。现加一垂直xoy平面向里、磁感强度为B的匀强磁场,要求这些入射电子穿过磁场都能平行于x轴且沿X轴正方向运动。求符合条件的磁场的最小面积。(不考虑电子之间的相互作用)例19、S为电子源,它只能在如图(l)所示纸面上的3600范围内发射速率相同,质量为m,电量为e的电子,MN是一块竖直挡板,与S的水平距离OS=L,挡板左侧充满垂直纸面向里的匀强磁场,磁感强度为B.(l)要使S发射的电子能到达挡板,则发射电子的速度至少多大?(2)若S发射电子的速度为eBL/m时,挡板被电子击中范围多大?(要求指明S在哪个范围内发射的电子可以击中挡板,并在图中画出能击中挡板距O上下最远的电子的运动轨道)例20、xyOP(,a)(全国卷1)如下图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内。已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场。求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;15\n(3)从粒子发射到全部粒子离开磁场所用的时间。三、平移圆:相反方向的磁场模型特征:带电粒子在两个或更多个并列匀强磁场中运动,粒子从一个匀强磁场进入另一个匀强磁场后,若磁场方向相反,根据左手定则得粒子旋转方向相反,轨迹在交界处必外切,轨迹可认为是圆的平移所得,如磁感应强度大小也变再结合缩放圆处理;若磁感应强度大小变化,根据洛伦兹力提供向心力得粒子运动半径改变,轨迹在交界处必内切,轨迹可认为两个半径不同的圆通过交替平移所得。如图13所示。例21、(2022·浙江)有一个放射源水平放射出α、β和γ三种射线,垂直射入如图14所示磁场。区域Ⅰ和Ⅱ的宽度均为d,各自存在着垂直纸面的匀强磁场,两区域的磁感应强度大小B相等,方向相反(粒子运动不考虑相对论效应)。(1)若要筛选出速率大于v1的β粒子进入区域Ⅱ,求磁场宽度d与B和v1的关系。 (2)若B=0.0034T,v1=0.1c(c是光速),则可得d;α粒子的速率为0.001c,计算α和γ射线离开区域Ⅰ时的距离;并给出去除α和γ射线的方法。(3)当d满足第(1)小题所给关系时,请给出速率在v1<v<v2区间的β粒子离开区域Ⅱ时的位置和方向。(4)请设计一种方案,能使离开区域Ⅱ的β粒子束在右侧聚焦且水平出射。已知:电子质量me=9.1×10-31kg,α粒子质量mα=6.7×10-27kg,电子电荷量q=1.6×10-19C,。题型4:周期性,会分析计算带电粒子在有界磁场边界碰撞的问题。带电粒子与有界磁场边界碰撞的问题,由于这类问题往往存在多解,解这类习题时常常由于只考虑问题的特解而忽略一般情况的分析,对学生能力的要求较高。1、带电粒子与绝缘圆筒的碰撞OAV0B图26例22、如图26所示,一个质量为m、电量为q的正离子,从A点正对着圆心O以速度V射入半径为R的绝缘圆筒中。圆筒内存在垂直纸面向里的匀强磁场,磁感应强度的大小为B。要使带电粒子与圆筒内壁碰撞多次后仍从A点射出,求正离子在磁场中运动的时间t.设粒子与圆筒内壁碰撞时无能量和电量损失,不计粒子的重力。15\n2、带电粒子与正方形绝缘壁的碰撞aAB图28例23、如图28所示,正方形匀强磁场区边界长为a、由光滑绝缘壁围成,质量为m、电量为q的带正电粒子垂直于磁场方向和边界,从下边界正中央的A孔射入磁场中。粒子碰撞时无能量和电量损失,不计重力和碰撞时间,磁感应强度的大小为B,粒子在磁场中运动的半径小于a。欲使粒子仍能从A孔处射出,粒子的入射速度应为多少?在磁场中运动时间是多少?3、带电粒子与三角形绝缘壁的碰撞例18、如图30所示,在半径为α的圆柱形空间中(图中圆为其横截面)充满磁感应强度为B的均匀磁场.其方向平行于轴线远离读者.在圆柱空间中垂直轴线平面内固定放置一绝缘材料制成的边长为L=1.6α的刚性等边三角形框架△DEF,其中心O位于圆柱的轴线上.DE边上S点处有一发射带电粒子的源,发射粒子的方向皆在图中截面内且垂直于DE边向下.发射粒子的电量皆为q(>0),质量均为m,但速度V有各种不同的数值.若这些粒子与三角形框架的碰撞均为完全弹性碰撞,并要求每一次碰撞时速度方向垂直于被碰的边.试问:SVODEFa图30(1)带电粒子速度V的大小取哪些数值时可使S点发出的粒子最终又回到S点?(2)这些粒子中,回到S点所用的最短时间是多少?15\n三、课后练习1.如图所示,在阴极射线管正下方平行放置一根通有足够强直流电流的长直导线,且导线中电流方向水平向右,则阴极射线将会(  )A.向上偏转B.向下偏转C.向纸内偏转D.向纸外偏转2.如图所示,在x轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为B.在xOy平面内,从原点O处沿与x轴正方向成θ角(0<θ<π)以速率v发射一个带正电的粒子(重力不计).则下列说法正确的是(  )A.若θ一定,v越大,则粒子在磁场中运动的时间越短B.若θ一定,v越大,则粒子在磁场中运动的角速度越大C.若v一定,θ越大,则粒子在磁场中运动的时间越短D.若v一定,θ越大,则粒子在离开磁场的位置距O点越远3.如图所示圆形区域内有垂直于纸面方向的匀强磁场,一束质量和电荷量都相同的带电粒子以不同的速率沿着相同的方向对准圆心O射入匀强磁场,又都从该磁场中射出,这些粒子在磁场中的运动时间有的较长,有的较短.若带电粒子在磁场中只受磁场力的作用,则在磁场中运动时间越长的带电粒子(  )A.速率一定越小B.速率一定越大C.在磁场中通过的路程越长D.在磁场中的周期一定越大OvBxy4.如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是()A.,正电荷B.,正电荷C.,负电荷D.,负电荷5.一长直螺线管中通有交流电,把一不计重力的带电粒子沿螺线管轴线射入管中,粒子将在管中()A.做圆周运动B.沿轴线往复运动C.做加速直线运动D.做匀速直线运动+v6.如图所示,一带负电的质点在固定的正的点电荷作用下绕该正电荷做匀速圆周运动,周期为T0,轨道平面位于纸面内,质点的速度方向如图中箭头所示。现加一垂直于轨道平面的匀强磁场,已知轨道半径不因此而改变,则()A.若磁场方向指向纸里,质点运动的周期将大于T0B.若磁场方向指向纸里,质点运动的周期将小于T0C.若磁场方向指向纸外,质点运动的周期将大于T015\nD.若磁场方向指向纸外,质点运动的周期将小于T0abdcOeBv7.如图所示,长方形abcd长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25T。一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带电粒子以速度v=5×l02m/s沿垂直ad方向且垂直于磁场射人磁场区域()A.从Od边射人的粒子,出射点全部分布在Oa边B.从aO边射人的粒子,出射点全部分布在ab边C.从Od边射入的粒子,出射点分布在Oa边和ab边D.从aO边射人的粒子,出射点分布在ab边和bc边8.有一质量为m,电荷量为q的带正电的小球停在绝缘平面上,并且处在磁感应强度为B方向垂直于纸面向里的磁场中,如图11所示,为了使小球对绝缘平面的压力为零,应该()图11A.使B的数值增大B.使磁场以速率向上移动C使磁场以速率向右移动D.使磁场以速率向左移动9.粒子甲的质量与电荷量分别是粒子乙的4倍和2倍,两粒子均带正电。让它们在匀强磁场中同一点以大小相等、方向相反的速度开始运动,已知磁场方向垂直直面向里,以下四个图中,能正确表示两粒子运动轨迹是()图1210.如图12所示,第一象限内有垂直于纸面向里的匀强磁场,有一对正、负粒子分别以不同的速率从原点进入磁场,它们的轨道半径值比为3:1,则正、负粒子在磁场中运动的时间之比()A.1∶2B.2∶1C.1∶3D.3∶1图1311.如图13所示,ab、cd为相距l=5cm的两平行虚线,ab的下方和cd的上方都是垂直于纸面向里的匀强磁场,磁感应强度为0.20T,一个质子(m=1.67×10-27kg)从ab上的P点以5.0×105m/s的速度沿与ab成300角的方向斜向上射出,经磁场偏转后恰好从ab上的Q点飞过,经过Q点时的速度方向也斜向上,不计重力,经过分析计算可知()A.质子经过Q点时的速度方向与ab成600角B.质子在磁场中作圆周运动的半径为2.6cmC.质子在cd上方磁场中运动的时间,是在ab下方磁场中运动时间的6倍D.P、Q两点的最短距离为17cm图1412.15\n如图14所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO’与SS’垂直。a、b、c三个质子先后从S点沿垂直于磁场的方向摄入磁场,它们的速度大小相等,b的速度方向与SS’垂直,a、c的速度方向与b的速度方向间的夹角分别为,且。三个质子经过附加磁场区域后能达到同一点S’,则下列说法中正确的有()www.ks5u.comA.三个质子从S运动到S’的时间相等B.三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO’轴上C.若撤去附加磁场,a到达SS’连线上的位置距S点最近D.附加磁场方向与原磁场方向相同13.一匀强磁场方向垂直于xOy平面,在xoy平面上,磁场分布在以O为圆心的一个圆形区域内,一个质量为m、电荷量为q的粒子,由原点O开始运动,初速度为v,方向沿x轴的正方向。后来,粒子经过y轴的P点,此时速度的方向与y轴的夹角为300度,P到O的距离为L,如图15所示。不计重力的影响,求磁场的磁感应强度B的大小和xOy平面上磁场区域的半径R。yP图15xovLv300x/cmPy/cmO图16V0θ(x,y)1014.如图16所示,在真空中坐标xoy平面的x>0区域内,有磁感应强度B=的匀强磁场,方向与xoy平面垂直,在X轴上的P(10,0)点,有一放射源,在xoy平面内向各个方向发射速率V0=的带正电粒子,粒子质量m=,粒子的带正电量为,则带电粒子能打到y轴上的范围为多少?(不计重力的影响)15.如图所示,电源电动势内阻,电阻。间距的两平行金属板水平放置,板间分布有垂直于纸面向里、磁感应强度的匀强磁场。闭合开关15\n,板间电场视为匀强电场,将一带正电的小球以初速度沿两板间中线水平射入板间。设滑动变阻器接入电路的阻值为,忽略空气对小球的作用,取。(1)当时,电阻消耗的电功率是多大?(2)若小球进入板间做匀速度圆周运动并与板相碰,碰时速度与初速度的夹角为,则是多少?16.(2022全国Ⅱ)如图所示,在0≤x≤a、o≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内.己知粒子在磁场中做圆周运动的半径介于到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一,求最后离开磁场的粒子从粒子源射出时的:(1)速度大小;(2)速度方向与y轴正方向夹角正弦。17.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用。如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭缝。离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA边且垂直于磁场的方向射入磁场,运动到GA边,被相应的收集器收集。整个装置内部为真空。已知被加速的两种正离子的质量分别是m1和m2(m1>m2),电荷量均为q。加速电场的电势差为U,离子进入电场时的初速度可以忽略。不计重力,也不考虑离子间的相互作用。(1)求质量为m1的离子进入磁场时的速率v1;(2)当磁感应强度的大小为B时,求两种离子在GA边落点的间距s;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度。若狭缝过宽,可能使两束离子在GA边上的落点区域交叠,导致两种离子无法完全分离。15\n设磁感应强度大小可调,GA边长为定值L,狭缝宽度为d,狭缝右边缘在A处。离子可以从狭缝各处射入磁场,入射方向仍垂直于GA边且垂直于磁场。为保证上述两种离子能落在GA边上并被完全分离,求狭缝的最大宽度。15

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 22:47:25 页数:15
价格:¥3 大小:603.66 KB
文章作者:U-336598

推荐特供

MORE