首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
新高考2023高考数学小题必练11函数的图像与性质202304211105
新高考2023高考数学小题必练11函数的图像与性质202304211105
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/9
2
/9
剩余7页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换(2)对称变换①;②;③;④(且)(且).(3)伸缩变换.②.(4)翻折变换①.②.1.【2016北京卷理14】设函数.①若,则的最大值为__________;②若无最大值,则实数的取值范围是__________.9\n【答案】2,【解析】两个函数的图像如图所示,当时,有图像可知的最大值为2;当时,没有最大值;当时,在处取得最大值2.【点睛】画出图形,可以通过图形的变化而得.2.【2019天津卷8】已知函数.给出下列结论:①的最小正周期为;②是的最大值;③把函数的图象上所有点向左平移个单位长度,可得到函数的图象.其中正确结论的选项是()A.①B.①③C.②③D.①②③【答案】AB【解析】①,正确;②,取最大值,错误;③根据图像左加右减原则,正确.【点睛】对于函数的相关性质,要会把当做整体,由的相关性质可得.一、单选题.1.函数的单调递增区间是()9\nA.B.C.D.【答案】A【解析】由题可得,解得或,由二次函数的性质和复合函数的单调性可得函数的单调递增区间为,故选A.2.设函数则满足的的取值范围是()A.B.C.D.【答案】D【解析】由或,∴满足的的取值范围是,故选D.3.已知函数为偶函数,当时,,且为奇函数,则()A.B.C.D.【答案】C【解析】∵函数为偶函数,∴.又为奇函数,图象关于点对称,∴函数的图象关于点对称,∴,∴,∴,∴函数的周期4,∴,故选C.4.已知函数,则的大致图象为()A.B.9\nC.D.【答案】A【解析】∵,∴函数为奇函数,排除B选项,求导:,∴函数单调递增,故排除C选项,令,则,故排除D,故选A.5.函数与在同一直角坐标系中的图象可能是()A.B.C.D.【答案】D【解析】对于A、B两图,,而的两根为0和,且两根之和为,由图知,得,矛盾;对于C、D两图,,在C图中两根之和,即矛盾,C错,D正确,故选D.6.函数在上单调递增,且函数是偶函数,则下列结论成立的是()A.B.9\nC.D.【答案】C【解析】函数是偶函数,则其图象关于轴对称,∴函数的图像关于对称,则,,函数在上单调递增,则有,∴.故选C.7.函数的图象大致为()A.B.C.D.【答案】D【解析】由题将原式化简得,,∴函数是奇函数,故排除选项A;又在区间时,,故排除选项B;当时,,故排除选项C,故选D.8.已知函数满足和,且当时,,9\n则()A.0B.2C.4D.5【答案】C【解析】函数满足和,可函数是以4为周期的周期函数,且关于对称,又由当时,,∴,故选C.9.若定义在上的偶函数,满足且时,,则方程的实根个数是()A.2个B.3个C.4个D.6个【答案】C【解析】由可得函数的周期为2,又函数为偶函数且当时,,故可作出函数得图象,∴方程的解个数等价于与图象的交点,由图象可得它们有4个交点,故方程的解个数为4.故选C.二、多选题.10.【2017全国1卷文9】已知函数,则()A.在单调递增B.在单调递减C.的图像关于直线对称D.的图像关于点对称【答案】ABC【解析】利用对数的运算法则,则,根据同增异减法则,知A、B正确;9\n注意到函数的定义域为,利用二次函数的对称性,知C正确.11.在实数集中定义一种运算“”,,,为唯一确定的实数,且具有性质:(1)对任意,;(2)对任意,,.关于函数的性质,有如下说法:①函数的最小值为3;②函数为偶函数;③函数的单调递增区间为.其中正确说法的选项为()A.①B.②C.③D.②③【答案】AB【解析】由于对任意,,,则由对任意,,可得,则有,对于①,由于定义域为,则,,当且仅当,即有,取最小值3,故①对;对于②,由于定义域为,关于原点对称,且,则为偶函数,故②对;对于③,,令,则,即的单调递增区间为,故③错.三、填空题.12.函数在区间上的值域是,则的最小值是________.【答案】【解析】函数的图象如图所示:9\n∵,∴根据图可知,,∴当,,取得最小值为.故答案为.13.【2016浙江卷文11】已知,则,.【答案】,【解析】,,,故答案为,.14.函数,定义函数,给出下列命题:①;②函数是偶函数;③当时,若,则有成立;④当时,函数有4个零点.其中正确命题的序号为__________.【答案】②③④【解析】对于①,∵函数,函数,∴,∴,故①不正确;对于②,∵,∴函数是偶函数,故②正确;对于③,由,得,又,∴,即,∴成立.故③正确;对于④,由于,定义函数,∴当时,函数在上单调递减,在上单调递增,9\n∴当时,的最小值为,∴当时,函数的图象与有2个交点,又函数是偶函数,∴当时,函数的图象与也有2个交点,画出图象如下图:故当时,函数有4个零点,∴④正确,综上可得②③④正确.9
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
新高考2023高考英语小题必练11情景交际20230421158
新高考2023高考物理小题必练16电场能的性质20230421183
新高考2023高考物理小题必练15电场力的性质20230421184
新高考2023高考数学小题必练12基本初等函数202304211104
新高考2023高考政治小题必练11文化与生活20230421118
新高考2023高考地理小题必练6海水的性质202304211171
新高考2023高考化学小题必练6含硫化合物的性质与应用
新高考2023高考化学小题必练2物质的组成分类性质
新高考2023高考化学小题必练20物质结构与性质
新高考2023高考化学小题必练11金属的腐蚀与防护
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 21:52:00
页数:9
价格:¥3
大小:420.83 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划