首页

【2022版中考12年】江苏省苏州市2002-2022年中考数学试题分类解析 专题12 押轴题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/61

2/61

剩余59页未读,查看更多内容需下载

【2022版中考12年】江苏省苏州市2022-2022年中考数学试题分类解析专题12押轴题一、选择题1..(江苏省苏州市2022年3分)如图,⊙O的内接△ABC的外角∠ACE的平分线交⊙O于点D。DF⊥AC,垂足为F,DE⊥BC,垂足为E。给出下列4个结论:①CE=CF,②∠ACB=∠EDF,③DE是⊙O的切线,④。其中一定成立的是【】A.①②③B.②③④C.①③④D.①②④-61-\n∴DE不是⊙O的切线。∴③错误。【只有当∠OCF=0,即AC是圆的直径时,DE才是⊙O的切线。同样可证,当圆心O在△ABC内时,∠ODE=900+∠OCF≠900,DE也不是⊙O的切线。】④如图,连接AD,BD。根据圆内接四边形的外角等于内对角得∠DCE=∠DAB,又∵∠DCE=∠DCF,∠DCA=∠DBA,∴∠DAB=∠DBA<900。∴。综上所述,①②④正确。故选D。2.(江苏省苏州市2022年3分)如图,已知△ABC中,AB=AC,∠BAC=900,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:(1)AE=CF;(2)△EPF是等腰直角三角形;(3);(4)EF=AP。当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有【】A.1个B.2个C.3个D.4个∴。∴(3)正确。-61-\n(4)∵EF不一定是中位线,∴EF不一定等于BC。又∵AP=BC,∴EF=AP不一定成立。∴(4)错误。综上所述,始终正确的是①②③。故选C。3.(江苏省苏州市2022年3分)如图,梯形ABCD的对角线交于点O,有以下四个结论:①△AOB∽△COD;②△AOD∽△ACB;③④。其中,始终正确的有【】A1个B2个C3个D4个4.(江苏省苏州市2022年3分)下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;-61-\n丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。其中,你认为正确的见解有【】A.1个B.2个C.3个D.4个5.(江苏省苏州市2022年3分)对左下方的几何体变换位置或视角,则可以得到的几何体是【】A.B.C.D.6.(江苏省苏州市2022年3分)如图,小明作出了边长为1的第1个正△A1B1C1-61-\n,算出了正△A1B1C1的面积。然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积。用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第10个正△A10B10C10的面积是【】A.B.C.D.-61-\n7.(江苏省苏州市2022年3分)如图.AB为⊙O的直径,AC交⊙O于E点,BC交⊙O于D点,CD=BD,∠C=70°.现给出以下四个结论:①∠A=45°;②AC=AB:③;④CE·AB=2BD2.其中正确结论的序号是【】A.①②B.②③C.②④D.③④8.(江苏省2022年3分)下面是按一定规律排列的一列数:第1个数:;第2个数:;-61-\n第3个数:;……第个数:.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是【】A.第10个数B.第11个数C.第12个数D.第13个数9.(江苏省苏州市2022年3分)如图,已知、两点的坐标分别为(2,0)、(0,2),的圆心坐标为(-1,0),半径为1.若是上的一个动点,线段与轴交于点,则面积的最小值是【】A.2B.1C.D.-61-\n10.(江苏省苏州市2022年3分)如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,∠a=75°,则b的值为【】A.3B.C.4D.【答案】B。【考点】一次函数,特殊角三角函数值。-61-\n【分析】根据三角函数求出点B的坐标,即可求得b的值:由可知,k=1,故在△OAB中,∠OBA,∴。故选B。11.(2022江苏苏州3分)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是【】A.B.C.D.-61-\n根据题意得出:∠WC3Q=30°,∠C3WQ=60°,∠A3WF=30°,∴WQ=,FW=WA3•cos30°=。∴点A3到x轴的距离为:FW+WQ=。故选D。12.(2022年江苏苏州3分)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PA+PC的最小值为【  】A.B.C.D.2∴PA+PC的最小值为。故选B。二、填空题-61-\n1.(江苏省苏州市2022年2分)设有反比例函数,、为其图象上的两点,若时,,则的取值范围是▲2.(江苏省苏州市2022年2分)如图,已知∠1=∠2,若再增加一个条件就能使结论“AB·DE=AD·BC”成立,则这个条件可以是▲_。3.(江苏省苏州市2022年3分)正方形网格中,小格的顶点叫做格点。小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形。小华在左边的正方形网格中作出了Rt⊿ABC。请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。【答案】作图如下(答案不唯一):-61-\n4.(江苏省苏州市2022年3分)如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为,则该圆弧所在圆的圆心坐标为▲。圆心。则圆心是(2,0),如图所示:-61-\n5.(江苏省苏州市2022年3分)如图.直角坐标系中,△ABC的顶点都在网格点上.其中,A点坐标为(2,一1),则△ABC的面积为▲平方单位.6.(江苏省苏州市2022年3分)如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,则∠A的大小等于▲度.7.(江苏省苏州市2022年3分)初三数学课本上,用“描点法”画二次函数-61-\n的图象时.列了如下表格:···-2-1012······-4-2···根据表格上的信息同答问题:该二次函数在=3时,y=▲.8.(江苏省2022年3分)如图,已知是梯形ABCD的中位线,△DEF的面积为,则梯形ABCD的面积为▲cm2.9.(江苏省苏州市2022年3分)如图,已知A、B两点的坐标分别为、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为▲.-61-\n10.(江苏省苏州市2022年3分)如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA的倍的长为半径作圆,则该圆与x轴的位置关系是▲(填“相离”、“相切”或“相交”).-61-\n11.(2022江苏苏州3分)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了▲秒(结果保留根号).-61-\n12.(2022年江苏苏州3分)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则 ▲ (用含k的代数式表示).【答案】。【考点】折叠问题,矩形的性质,折叠的对称性质,全等三角形的判定和性质,勾股定理,二次根式化简,待定系数法的应用。【分析】如图,连接EG,∵,∴设,则。-61-\n三、解答题1.(江苏省苏州市2022年7分)已知:⊙与⊙外切于点,过点的直线分别交⊙、⊙于点、,⊙的切线交⊙于点、,为⊙的弦,(1)如图(1),设弦交于点,求证:;(2)如图(2),当弦绕点旋转,弦的延长线交直线B于点时,试问:是否仍然成立?证明你的结论。-61-\n2.(江苏省苏州市2022年7分)如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3)。点P、Q同时从原点出发,分别作匀速运动。其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动。当这两点中有一点到达自己的终点时,另一点也停止运动。(1)设从出发起运动了秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含的代数式表示,不要求写出的取值范围);(2)设从出发起运动了秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半。①试用含的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的的值和P、Q的坐标;如不可能,请说明理由。-61-\n∴+OQ=(14+3+10+5),即OQ=16-。∴点Q所经过的路程为16-,速度为。②不能。理由如下:当Q点在OC上时,如图,过点Q作QF⊥OA于点F。则OP=,QF=。∴。又∵,∴令,解之,得。∵当时,,这时点Q不在OC上,故舍去;当时,,这时点Q不在OC上,故舍去。-61-\n∴当Q点在OC上时,PQ不可能同时把梯形OABC的面积也分成相等的两部分。3.(江苏省苏州市2022年7分)如图1,⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在上取一点D,分别作直线CD、ED,交直线AB于点F、M。(1)求∠COA和∠FDM的度数;(2)求证:△FDM∽△COM;(3)如图2,若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M。试判断:此时是否仍有△FDM∽△COM?证明你的结论。【答案】解:(1)∵AB为直径,CE⊥AB,∴,CG=EG。在Rt△COG中,∵OG=OC,∴∠OCG=30°。∴∠COA=60°。又∵∠CDE的度数=的度数=的度数=∠COA的度数=60°,-61-\n∴∠FDM=180°-∠CDE=120°。4.(江苏省苏州市2022年7分)OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6。(1)如图1,在OA上选取一点G,将△COG沿CG翻折,使点O落在BC边上,记为E,求折痕CG所在直线的解析式。(2)如图2,在OC上选取一点D,将△AOD沿AD翻折,使点O落在BC边上,记为。①求折痕AD所在直线的解析式;-61-\n②再作F∥AB,交AD于点F,若抛物线过点F,求此抛物线的解析式,并判断它与直线AD的交点的个数。(3)如图3,一般地,在OC、OA上选取适当的点,使纸片沿翻折后,点O落在BC边上,记为。请你猜想:折痕所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想。-61-\n5.(江苏省苏州市2022年7分)某中学为筹备校庆活动,准备印制一批校庆纪念册。该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页。印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表。印数a(单位:千册)1≤a<55≤a<10彩色(单位:元/张)2.22.0黑白(单位:元/张)0.70.6-61-\n(1)印制这批纪念册的制版费为元;(2)若印制2千册,则共需多少费用?(3)如果该校希望印数至少为4千册,总费用至多为60000元,求印数的取值范围。(精确到0。01千册)6.(江苏省苏州市2022年8分)如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(3,0),(3,4)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥AC,交AC于P,连结MP。已知动点运动了x秒。(1)P点的坐标为(,);(用含x的代数式表示)(2)试求△MPA面积的最大值,并求此时x的值。(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果。-61-\n【答案】解:(1)3—x;x。【考点】二次函数综合题,勾股定理,待定系数法,直线上点的坐标与方程的关系,二次函数的最值,等腰三角形的判定和性质。【分析】(1)由题意可知C(0,4),A(3,0),所以由待定系数法可求出直线AC解析式为:y=-x+4。因为P点的横坐标与N点的横坐标相同为3-x,代入直线AC中得y=x,所以P点坐标为(3-x,x)。-61-\n(2)通过求△MPA的面积和x的函数关系式来得出△MPA的面积最大值及对应的x的值。(3)可分MP=AP,AP=AM,MP=MA三种情况进行讨论即可。7.(江苏省苏州市2022年7分)苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;(1)若租用水面亩,则年租金共需__________元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现在奖金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合养殖。已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元?∴李大爷应该租10亩水面,并向银行贷款24000元,可使年利润超过35000元。【考点】一元一次不等式的应用-61-\n【分析】(1)年租金=每亩水面的年租金×亩数。(2)年利润=收益-成本=(蟹苗收益+虾苗收益)-(蟹苗成本+虾苗成本)-水面年租金-饲养总费用(3)设应该租n亩水面,并向银行贷款x元,可使年利润超过35000元。依题意,有①年内总成本为:4900n=25000+x;②向银行贷款不超过25000元:;③年利润超过35000元:。解之即得所求。8(江苏省苏州市2022年8分)如图一,平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A点坐标为(10,0),C点坐标为(0,6)。D是BC边上的动点(与点B、C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,将△BDE沿DE翻折,得到△GDE,并使直线DG、DF重合。(1)如图二,若翻折后点F落在OA边上,求直线DE的函数关系式;(2)设,,求关于的函数关系式,并求的最小值;(3)一般地,请你猜想直线DE与抛物线的公共点的个数,在图二的情形中通过计算验证你的猜想;如果直线DE与抛物线始终有公共点,请在图一中作出这样的公共点。-61-\n9.(江苏省苏州市2022年8分)-61-\n司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”(如图).已知汽车的刹车距离s(单位:m)与车速v(单位:m/s)之同有如下关系:s=tv+kv2其中t为司机的反应时间(单位:s),k为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=0.7s(1)若志愿者未饮酒,且车速为11m/s,则该汽车的刹车距离为____m(精确到0.1m)(2)当志愿者在喝下一瓶啤酒半小时后,以17m/s的速度驾车行驶,测得刹车距离为46m.假如该志愿者当初是以11m/s的车速行驶,则刹车距离将比未饮酒时增加多少?(精确到O.1m)(3)假如你以后驾驶该型号的汽车以11m/s至17m/s的速度行驶,且与前方车辆的车距保持在40m至50m之间.若发现前方车辆突然停止,为防止“追尾”。则你的反应时间应不超过多少秒?(精确到0.01s)10.(江苏省苏州市2022年8分)-61-\n如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO向终点O运动,动点Q从A点出发沿AB向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了.(1)Q点的坐标为(___,___)(用含x的代数式表示)(2)当x为何值时,△APQ是一个以AP为腰的等腰三角形?(3)记PQ的中点为G.请你探求点G随点P,Q运动所形成的图形,并说明理由.-61-\n11.(江苏省苏州市2022年8分)如图,BC是⊙O的直径,点A在圆上,且AB=AC=4.P为AB上一点,过P作PE⊥AB分别BC、OA于E、F(1)设AP=1,求△OEF的面积.(2)设AP=a(0<a<2),△APF、△OEF的面积分别记为S1、S2。①若S1=S2,求a的值;②若S=S1+S2,是否存在一个实数a,使S<?若存在,求出一个a的值;若不存在,说明理由.-61-\n-61-\n12.(江苏省苏州市2022年8分)设抛物线与x轴交于两个不同的点A(一1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.(3)在(2)的条件下,△BDP的外接圆半径等于________________.(2)将D(1,n)代入,得n=-3。由解得,。∴E(6,7)。过点E作EH⊥轴于点H,则点H(6,0)。-61-\n∴AH=EH=7,∠EAH=450。过点D作DF⊥轴于点F,则点F(1,0)。∴BF=DF=3,∠DBF=450。∴∠EAH=∠DBF=450。∴∠DBH=1350,900<∠EBA<1350。则点P只能在点B的左侧,有以下两种情况(如图):【考点】二次函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,等腰直角三角形的判定和性质,解方程组。【分析】(1)在中令x=0即能求得C点坐标;由△AOC∽△COB即能求得m的值;由A、C三点坐标代入即可求出抛物线的解析式。(2)将D(1,n)代入求得n,联立和-61-\n求出点E的坐标。过点E作EH⊥轴于点H和过点D作DF⊥轴于点F,通过等腰直角三角形的判定和性质得出点P只能在点B的左侧的结论。分△BDP1∽△EAB和△BDP2∽△BAE分别求出符合条件的点P。(3)①点P(,0)时,△BDP的外接圆圆心在直线上,设外接圆圆心坐标为S()。则,13.(江苏省苏州市2022年9分)课堂上,老师将图①中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化当△AOB旋转90°时,得到△A1OB1.已知A(4,2)、B(3,0).(1)△A1OB1的面积是;A1点的坐标为(,;B1点的坐标为(,);(2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB绕AO的中点C(2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA于D,O′A′交轴于E.此时A′、O′和B′的坐标分别为(1,3)、(3,-1)和(3,2),且O′B′经过B点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD的面积)最小,求四边形CEBD的面积;-61-\n(3)在(2)的条件之下,△AOB外接圆的半径等于.【答案】解:(1)3;-2,4;0,3。(2)设直线OA:,∵A(4,2),∴,即。∴直线OA:。-61-\n∴,解得。∴△AOB外接圆的半径。14.(江苏省苏州市2022年9分)如图,抛物线与轴的交点为M、N.直线与轴交于P(-2,0).与y轴交于C,若A、B两点在直线上.且AO=BO=,AO⊥BO.D为线段MN的中点。OH为Rt△OPC斜边上的高.(1)OH的长度等于;k=,b=.(2)是否存在实数a,使得抛物线上有一点E.满足以D、N、E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式.同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由).并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG10,写出探索过程-61-\n【答案】解:(1)1;;。或1;-;-。(2)存在。理由如下:假设存在实数a,使得抛物线上有一点F.满足以D、N、E为顶点的三角形与△AOB相似。∵AO=BO=,AO⊥BO,∴△AOB是等腰直角三角形。∴以D、N、E为顶点与△AOB相似的三角形是等腰直角三角形,有两种情况:①以DN为直角边,②以DN为斜边。①若DN为直角边,则ED⊥DN。由抛物线与轴的交点为M、N,得M(-1,0)、N(5,0)。-61-\n只有可能△DN是以DN为斜边的等腰直角三角形,此时(,),代入不成立,所以点不在抛物线上。因此,抛物线上没有满足条件的其它E点。当时,若抛物线上还有满足条件的E点,不妨设为,那么只有可能△DN是以DN为直角边的等腰直角三角形,此时(2,3),代入不成立,所以点不在抛物线上。因此,抛物线上没有满足条件的其它E点。当E(2,3),对应的抛物线的解析式为,∵△EDN和△AOB是等腰直角三角形,∴∠GMP=∠PBO=450。又∵∠NPG=∠BPO,∴△NPG∽△BPO。,即。∵PO=2,PN=7,∴。∵,∴,即PB·PG10。-61-\n15.(江苏省2022年12分)某加油站五月份营销一种油品的销售利润(万元)与销售量(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量为多少时,销售利润为4万元;(2)分别求出线段与所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)-61-\n法即可求出和所对应的函数关系式。-61-\n16.(江苏省2022年12分)如图,已知射线与轴和轴分别交于点和点.动点从点出发,以1个单位长度/秒的速度沿轴向左作匀速运动,与此同时,动点从点出发,也以1个单位长度/秒的速度沿射线的方向作匀速运动.设运动时间为秒.(1)请用含的代数式分别表示出点与点的坐标;(2)以点为圆心、个单位长度为半径的与轴交于A、B两点(点在点的左侧),连接PA、PB.①当与射线有公共点时,求的取值范围;②当为等腰三角形时,求的值.-61-\n∴。(2)①当的圆心由点向左运动,使点到点时,有,即。当点在点左侧,与射线相切时,过点作射线,垂足为,则由,得,则.解得。由,即,解得。-61-\n17.(江苏省苏州市2022年9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,,,;图②中,,,.图③是刘卫同学所做的一个实验:他将的直角边与的斜边重合在一起,并将沿方向移动.在移动过程中,、两点始终在边上(移动开始时点与点重合).(1)在沿方向移动的过程中,刘卫同学发现:、两点间的距离逐渐▲.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当移动至什么位置,即的长为多少时,、的连线与平行?问题②:当移动至什么位置,即的长为多少时,以线段、、的长度为三边长的三角形是直角三角形?问题③:在的移动过程中,是否存在某个位置,使得?如果存在,求出的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.-61-\n(Ⅲ)当为斜边时,由,,,∵=144-248<0,∴方程无解。综上所述,当时,以线段、、的长度为三边长的三角形是直角三角形。问题③:不存在这样的位置,使得。理由如下:假设,由得。作的平分线,交于,则-61-\n18(江苏省苏州市2022年9分)如图,以为顶点的抛物线与轴交于点.已知、两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设是抛物线上的一点(、为正整数),且它位于对称轴的右侧.若以、、、为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点,是否总成立?请说明理由.-61-\n19.(江苏省苏州市2022年9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段圆弧,即和-61-\n,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她提出了如下问题:问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OABC按上述方法经过5次旋转,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是?请你解答上述两个问题.-61-\n20.(江苏省苏州市2022年10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.-61-\n(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物线的对称轴上,求实数a的值;(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.-61-\n①如图②,若点P是边EF上的任意一点(不与点E重合),连接PM,∵点E(4,4)、F(4,3)与点B(4,0)在一直线上,点C在y轴上,∴PB<4,PC≥4,∴PC>PB。又∵PD>PM>PB,PA>PM>PB,∴PB≠PA,PB≠PC,PB≠PD。∴此时线段PA、PB、PC、PD不能构成平行四边形。②设点P是边FG上的任意一点(不与点G重合),∵点F的坐标是(4,3),点G的坐标是(5,3),∴FG=3,GB=。-61-\n21.(2022江苏苏州9分)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合.在移动过程中,边AD始终与边FG重合,-61-\n连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG、GH的长分别为4cm、3cm.设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.⑴试求出y关于x的函数关系式,并求出y=3时相应x的值;⑵记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;⑶当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.-61-\n22.(2022江苏苏州10分)如图,已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.⑴点B的坐标为▲,点C的坐标为▲(用含b的代数式表示);⑵请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;⑶请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.【答案】解:(1)B(b,0),C(0,)。(2)假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形。设点P坐标(x,y),连接OP,-61-\n则∴。意两个三角形均相似。【考点】二次函数综合题,曲线上点的坐标与方程的关系,等腰直角三角形的判定和性质,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质。-61-\n【分析】(1)令y=0,即,解关于x的一元二次方程即可求出A,B横坐标,令23.(2022年江苏苏州9分)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s.当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB'F,设点E,F,G运动的时间为t(单位:s).(1)当t= ▲ s时,四边形EBFB'为正方形;(2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B'与点O重合?若存在,求出t的值;若不存在,请说明理由.-61-\n解得(不合题意,舍去)。∵,∴或符合题意。∴若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,则或。24.(2022年江苏苏州10分)如图,已知抛物线(b,c是常数,且c<0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).(1)b= ▲ ,点B的横坐标为 ▲ (上述结果均用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线交于点E.点D是x轴上一点,其坐标为(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC的面积为S.①求S的取值范围;-61-\n②若△PBC的面积S为整数,则这样的△PBC共有 ▲ 个.-61-\n【考点】二次函数综合题,单动点问题,待定系数法的应用,曲线上点的坐标与方程的关系,二次函数的最值,分类思想的应用。【分析】(1)将点A的坐标为(-1,0)代入得。-61-\n-61-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:17:34 页数:61
价格:¥3 大小:2.92 MB
文章作者:U-336598

推荐特供

MORE