首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
火线100天四川专版2022中考数学专题复习七几何图形综合题题型2与圆有关的几何综合题
火线100天四川专版2022中考数学专题复习七几何图形综合题题型2与圆有关的几何综合题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
剩余5页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
与圆有关的几何综合题 (2022·德阳)如图,已知BC是⊙O的弦,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC=60°.(1)求证:AB为⊙O的切线;(2)若E、F分别是AB、AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.【思路点拨】 (1)连接OB,证OB⊥AB即可;(2)取AB的中点G,连接DG,易证得△EGD≌△FCD,从而猜测出BE+DF的值是个定值,这个定值应该等于AB长的一半.【解答】 (1)证明:∵△ABC为正三角形,D为BC的中点,∴OD⊥BC,AO平分∠BAC.∴∠BAD=30°.∵∠BMC=60°,∴∠BOA=∠BMC=60°.∴∠BAD+∠BOA=90°.∴∠ABO=90°.∴OB⊥AB.∵OB是⊙O的半径,∴AB是⊙O的切线.(2)∵∠BAD=30°,OB⊥AB,OB=2,∴AB=2.取AB的中点G,连接DG,∴AG=BG=.∵∠ABD=60°,∴△BDG是等边三角形.∴∠DGE=60°,GD=BD.∵∠FCD=60°,CD=BD,∴∠FCD=∠EGD,GD=CD.∵∠EDF=120°,∴∠FDC+∠BDE=60°.∵∠BDG=60°,∴∠EDG+∠BDE=60°.∴∠EDG=∠FDC.∴△EGD≌△FCD.∴FC=EG.∴BG=BE+EG=BE+CF=.即BE+CF的值是定值,这个值是.动态问题常见有两大类:动态问题中的定值和动态问题中的变值.动态问题中的定值往往包含关于角度、线段、面积等定值问题.解决这类问题时,要搞清图形的变化过程,正确分析变量与其他量之间的内在联系,建立它们之间的关系.要善于探索动点运动的特点和规律,抓住图形在变化过程中不变的元素.必要时,多作出几个符合条件的草图也是解决问题的好办法. 1.(2022·内江)如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.7\n(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长.2.(2022·乐山)已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)7\n3.(2022·南充)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在DC的延长线上,EP=EG.(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF·BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.4.(2022·攀枝花)如图,以点P(-1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;7\n(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.7\n参考答案1.(1)连接OC.∵CA=CE,∠CAE=30°,∴∠E=∠CAE=30°,∠COE=2∠A=60°.∴∠OCE=90°.∴CE是⊙O的切线.(2)过点C作CH⊥AB于H.由题可得CH=h.在Rt△OHC中,CH=OC·sin∠COH,∴h=OC·sin60°=OC.∴OC==h.∴AB=2OC=h.(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,则∠AOF=∠COF=∠AOC=(180°-60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形.∴AF=AO=OC=FC.∴四边形AOCF是菱形.∴根据对称性可得DF=DO.过点D作DM⊥OC于M,∵OA=OC,∴∠OCA=∠OAC=30°.∴DM=DC·sin∠DCM=DC·sin30°=DC.∴CD+OD=DM+FD.根据两点之间线段最短可得:当F、D、M三点共线时,DM+FD(即CD+OD)最小.此时FM=OF·sin∠FOM=OF=6,则OF=4.∴AB=2OF=8.∴当CD+OD的最小值为6时,⊙O的直径AB的长为8. 2.(1)存在.AE=CE.连接AE,∵∠ABC=90°,∴AE为⊙O的直径.连接ED,∴∠ADE=90°.又∵AD=DC.∴ED为AC的中垂线.∴AE=CE.7\n(2)①连接AE、DE.∵EF是⊙O的切线,∴∠AEF=90°.由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∠AED+∠DEF=90°.∴∠EAD=∠DEF.∴△AED∽△EFD.∴=.∴ED2=AD·DF.又AD=DC=CF,∴ED2=2AD·AD=2AD2.在Rt△AED中,∵AE2=AD2+ED2=3AD2,∴sin∠CAB=sin∠CED=sin∠AED===.②sin∠CAB=. 3.(1)证明:连接OP.∵EP=EG,∴∠EPG=∠EGP.又∵∠EGP=∠BGF,∴∠EPG=∠BGF.∵OP=OB,∴∠OPB=∠OBP.∵CD⊥AB,∴∠BFG=∠BGF+∠OBP=90°.∴∠EPG+∠OPB=90°.∴直线EP为⊙O的切线.(2)证明:连接OG.∵BG2=BF·BO,∴=.又∵∠OBG=∠GBF,∴△BFG∽△BGO.∴∠BGO=∠BFG=90°.∴BG=PG.(3)连接AC、BC.∵sinB=,∴=.∵OB=r=3,∴OG=,由(2)得∠GBF+∠FGB=90°,∠OGF+∠FGB=90°,∴∠GBF=∠OGF.∴sin∠OGF==.∴OF=·OG=·=1.∴BF=BO-OF=3-1=2,FA=OF+OA=1+3=4,∵AB为⊙O的直径,∴∠ACB=∠ACF+∠BCF=90°.∵∠ACF+∠A=90°,∴∠BCF=∠A.∴△BCF∽△CAF.∴=.∴CF2=BF·FA.∴CF===2.∴CD=2CF=4. 4.(1)连接PA.∵PO⊥AD,AD=2,∴OA=AD=.∵点P坐标为(-1,0),∴OP=1.∴PA===2.∴BP=CP=2.∴B(-3,0),C(1,0).(2)延长AP交⊙P于点M,连接MB、MC.线段MB、MC即为所求.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H.在△MHP和△AOP中,7\n∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(-2,).(3)在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.7
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
中考数学二轮复习专题二解答重难点题型突破题型六二次函数与几何图形综合题试题
火线100天遵义专版2022中考数学总复习题型专项六圆的有关证明与计算
火线100天遵义专版2022中考数学总复习专题复习二几何图形中的动点问题
火线100天遵义专版2022中考数学总复习专题复习三二次函数与几何图形综合
火线100天贵州专版2022中考数学复习集训题型专项七圆的有关证明与计算
火线100天四川专版2022年中考数学一轮复习题型2与圆有关的几何综合题
火线100天四川专版2022年中考数学一轮复习题型1与三角形四边形有关的几何综合题
火线100天四川专版2022中考数学专题复习八二次函数与几何综合
火线100天四川专版2022中考数学专题复习七几何图形综合题题型1与三角形四边形有关的几何综合题
火线100天云南专版2022中考数学复习集训题型专项十圆的有关计算与证明
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 20:06:17
页数:7
价格:¥3
大小:131.76 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划