首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
辽宁省大连市2022年中考数学一模试卷(解析版)
辽宁省大连市2022年中考数学一模试卷(解析版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/19
2
/19
剩余17页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
辽宁省大连市2022年中考数学一模试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,只有一个选项正确)1.(3分)(2022•大连一模)5的相反数是( ) A.B.5C.﹣5D.考点:相反数..分析:两数互为相反数,它们的和为0,由此可得出答案.解答:解:设5的相反数为x.则5+x=0,x=﹣5.故选C.点评:本题考查的是相反数的概念.两数互为相反数,它们的和为0. 2.(3分)(2022•大连一模)如图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是( ) A.B.C.D.考点:简单组合体的三视图..专题:应用题.分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解答:解:从左边看是竖着叠放的2个正方形,故选C.点评:本题主要考查了几何体的三种视图和学生的空间想象能力,难度适中. 3.(3分)(2022•大连一模)下列计算正确的是( ) A.(b2)3=b5B.b2•b3=b6C.b2+b3=2b5D.b3+b3=2b3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法..专题:计算题.分析:A、利用幂的乘方运算法则计算得到结果,即可作出判断;B、利用同底数幂的乘法法则计算得到结果,即可作出判断;C、本选项不能合并,错误;D、合并同类项得到结果,即可作出判断.解答:解:A、(b2)3=b6,本选项错误;B、b2•b3=b5,本选项错误;C、本选项不能合并,错误;D、b3+b3=2b3,本选项正确,故选D19\n点评:此题考查了幂的乘方与积的乘方,合并同类项,去括号与添括号,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键. 4.(3分)(2022•大连一模)袋中有3个黄球,2个红球和4个白球,这些球除颜色不同外其余均相同,在看不到球的条件下,随机从袋中摸出1个球,则摸出黄球的概率是( ) A.B.C.D.考点:概率公式..分析:让黄球的个数除以球的总个数即为所求的概率.解答:解:∵袋中有3个黄球,2个红球和4个白球,∴从布袋中随机摸出一个球是黄球的概率为:=.故选:A.点评:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. 5.(3分)(2022•大连一模)学校甲、乙两只篮球队成员身高的方差分别为:S甲2=8.6,S乙2=1.5,那么系列说法中正确的是( ) A.甲队成员身高更整齐B.甲队成员平均身高更大 C.乙队成员身高更整齐D.乙队成员平均身高更大考点:方差..分析:根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S甲2=8.6,S乙2=1.5,∴S甲2>S乙2,∴乙队成员身高更整齐;故选C.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 6.(3分)(2022•大连一模)已知⊙O1的半径r为3cm,⊙O2的半径R为4cm,两圆的圆心距O1O2为1cm,则这两圆的位置关系是( ) A.相交B.内含C.内切D.外切考点:圆与圆的位置关系..分析:根据圆心距与半径之间的数量关系可知⊙O1与⊙O2的位置关系是内切.解答:解:∵⊙O1的半径r为3cm,⊙O2的半径R为4cm,两圆的圆心距O1O219\n为1cm,4﹣3=1,∴⊙O1与⊙O2的位置关系是内切.故选C.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P,外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R﹣r;内含:P<R﹣r. 7.(3分)(2022•大连一模)如图,要想证明平行四边形ABCD是菱形,下列条件中不能添加的是( ) A.AC、BD互相垂直平分B.AC⊥BD C.AB=ADD.AC=BD考点:菱形的判定..分析:根据菱形的判定(①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形)判断即可.解答:解:A、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,正确,故本选项错误;B、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,正确,故本选项错误;C、四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形,正确,故本选项错误;D、根据四边形ABCD是平行四边形和AC=BD,得出四边形ABCD是矩形,不能推出四边形是菱形,错误,故本选项正确;故选D.点评:本题考查了菱形的判定定理的应用,注意:菱形的判定定理有①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形. 8.(3分)(2022•大连一模)如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2),点B的横坐标的最大值为3,则点A的横坐标的最小值为( ) A.﹣3B.﹣1C.1D.3考点:二次函数综合题..19\n专题:压轴题.分析:根据顶点P在线段MN上移动,又知点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2),分别求出对称轴过点M和N时的情况,即可判断出A点坐标的最小值.解答:解:根据题意知,点B的横坐标的最大值为3,即可知当对称轴过N点时,点B的横坐标最大,此时的A点坐标为(﹣1,0),当可知当对称轴过M点时,点A的横坐标最小,此时的B点坐标为(1,0),此时A点的坐标最小为(﹣3,0),故点A的横坐标的最小值为﹣3,故选A.点评:本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握二次函数的图象对称轴的特点,此题难度一般. 二、填空题(本题共8小题,每小题3分,共24分)9.(3分)(2022•大连一模)16的平方根是 ±4 .考点:平方根..专题:计算题;压轴题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 10.(3分)(2022•大连一模)分解因式:x2﹣9x= x(x﹣9) .考点:因式分解的意义..分析:首先确定多项式中的两项中的公因式为x,然后提取公因式即可.解答:解:原式=x•x﹣9•x=x(x﹣9),故答案为:x(x﹣9).点评:本题考查了提公因式法因式分解的知识,解题的关键是首先确定多项式各项的公因式,然后提取出来. 11.(3分)(2022•大连一模)当x=9时,x2﹣2x+5= 68 .考点:代数式求值..专题:计算题.分析:将x的值代入原式计算即可求出值.解答:解:将x=9代入得:原式=81﹣18+5=68.故答案为:68点评:此题考查了代数式求值,比较简单,是一道基本题型. 19\n12.(3分)(2022•大连一模)学校要从小明等13名同学出选出6名学生参加数学竞赛.经过选拔赛后,小明想提前知道自己能否被选上,他除了要知道自己的成绩以外,还要知道这13名同学成绩的 中位数 .考点:统计量的选择..分析:13人成绩的中位数是第7名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解答:解:由于总共有13个人,且他们的分数互不相同,第7名的成绩是中位数,要判断是否进入前6名,故小明应知道自已的成绩和中位数.故答案为:中位数.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 13.(3分)(2022•大连一模)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD= 25 度.考点:平行线的性质;三角形内角和定理..专题:计算题.分析:要求∠BCD的度数,只需根据平行线的性质求得∠B的度数.显然根据三角形的内角和定理就可求解.解答:解:∵在Rt△ABC中,∠BAC=65°,∴∠ABC=90°﹣∠BAC=90°﹣65°=25°.∵AB∥CD,∠BCD=∠ABC=25°.点评:本题考查了平行线性质的应用,锻炼了学生对所学知识的应用能力. 14.(3分)(2022•大连一模)如果关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,那么k应满足的条件为 k< .考点:根的判别式..专题:计算题.分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣3)2﹣4×1×k>0,然后解不等式即可.解答:解:∵关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣3)2﹣4×1×k>0,解得k<,∴k的取值范围为k<.19\n故答案为k<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根. 15.(3分)(2022•大连一模)在如图所示的平面直角坐标系中,将△OAB绕点O逆时针旋转90度后与△OCD重合.已知线段OB扫过的面积为4π,则OB长 4 .考点:旋转的性质;扇形面积的计算..分析:根据旋转的性质得出∠DOB=90°,再利用扇形的面积公式求出OB的长即可.解答:解:∵将△OAB绕点O逆时针旋转90度后与△OCD重合,线段OB扫过的面积为4π,∴∠DOB=90°,S扇形DOB==4π,解得:OB=4,故答案为:4.点评:此题主要考查了旋转的性质以及扇形的面积公式,根据扇形面积公式求出是解题关键. 16.(3分)(2022•大连一模)如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为 4 .考点:解直角三角形;线段垂直平分线的性质..专题:计算题;压轴题.分析:由于cos∠BDC=,可设DC=3x,BD=5x,由于MN是线段AB的垂直平分线,故AD=DB,AD=5x,又知AC=8cm,即可据此列方程解答.解答:解:∵cos∠BDC=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,19\n∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,BC==4.故答案为4.点评:本题考查了线段垂直平分线的性质、勾股定理、解直角三角形的相关知识,综合性较强,计算要仔细. 三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)(2022•大连一模)解方程:考点:解分式方程..专题:计算题.分析:方程两边都乘以最简公分母(x﹣4),化为整式方程求解即可.解答:解:方程两边同乘以x﹣4,得:(3﹣x)﹣1=x﹣4(2分)解得:x=3(6分)经检验:当x=3时,x﹣4=﹣1≠0,所以x=3是原方程的解.(8分)点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化. 18.(9分)(2022•大连一模)解不等式组.考点:解一元一次不等式组..分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.(12分)由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4(4分)∴原不等式组的解集为:1≤x<4.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x同时<某一个数,那么解集为x<较小的那个数.19\n 19.(9分)(2022•大连一模)如图,在平行四边形ABCD中,E、F分别在AD、BC上,∠DEC=∠BFA,G为AC、EF交点求证:EG=GF.考点:平行四边形的判定与性质..专题:证明题.分析:欲证明EG=GF,只需证明四边形AFCE是平行四边形.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BFA=∠DAF.又∵∠DEC=∠BFA,∴∠DEC=∠DAF,∴EC∥AF,∴四边形AFCE是平行四边形,∴EF=GF.点评:本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法. 20.(12分)(2022•大连一模)《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.(1)在抽取的学生中不及格人数所占的百分比是 4 %;(2)小明按以下方法计算出抽取的学生平均得分是:(90+78+66+42)÷4=69.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式;(不必算出结果)(3)若不及格学生的总分恰好等于某一个良好等级学生的分数,请估算出该校九年级学生中优秀等级的人数.考点:扇形统计图;解一元一次不等式组;用样本估计总体;条形统计图..19\n专题:应用题;压轴题;图表型.分析:(1)根据扇形统计图的定义,各部分占总体的百分比之和为1,由扇形图可知,不及格人数所占的百分比是1﹣52%﹣26%﹣18%=4%;(2)抽取的学生平均得分=各等级学生的平均分数×所占百分比的和;(3)可由一个良好等级学生分数和不及格学生平均分估算得出,也可用不等式的思想得出.解答:解:(1)不及格人数所占的百分比是1﹣52%﹣26%﹣18%=4%(1分);(2)不正确,(1分)正确的算法:90×18%+78×26%+66×52%+42×4%;(2分)(3)因为一个良好等级学生分数为76~85分,而不及格学生平均分为42分,由此可以知道不及格学生仅有2人,将一个良好等级的分数当成78分估算出此结果也可,(2分)抽取优秀等级学生人数是:2÷4%×18%=9人,(3分)九年级优秀人数约为:9÷10%=90人(4分)点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了平均数、中位数、众数的认识. 四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2022•大连一模)某学校宏志班的同学们五一期间去双塔寺观赏牡丹,同时对文宣塔的高度进行了测量.如图,他们先在A处测得塔顶C的仰角为30°;再向塔的方向直行80步到达B处,又测得塔顶C的仰角为60度.请用以上数据计算塔高.(学生的身高忽略不计,1步=0.8m,结果精确到1m)考点:解直角三角形的应用-仰角俯角问题..专题:应用题.分析:首先分析图形:根据题意构造直角三角形;本题涉及多个直角三角形,应利用其公共边构造等量关系,进而可求出答案.解答:解:根据题意可得:设C在地面的垂足为D;且CD=x;在△ACD中,有AD=x÷tan30°=x,在△BCD中,有BD=x÷tan60°=x,故AD﹣BD=80×0.8=64;解可得:x≈55.4.故塔高CD约55.4米.19\n点评:本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形. 22.(9分)(2022•大连一模)如图①,一条笔直的公路上有A、B、C三地,B、C两地相距150千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A地的距离y1、y2(千米)与行驶时间x(时)的关系如图②所示.根据图象②进行以下探究:(1)求图中②M点的坐标,并解释该点的实际意义.(2)在图②中补全甲车的函数图象,求甲车到A地的距离y1与行驶时间x的函数关系式.(3)A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.考点:一次函数的应用..分析:(1)根据B、C间的距离和乙从C地到B地的时间求出乙车的速度,由C、A的距离和乙车的速度可求M的坐标,即乙车从C到A所花时间;(2)先求甲车的速度,再求甲车从B到C所用总时间,然后分时段讨论,列出甲车到A地的距离y1与行驶时间x的函数关系式;(3)根据两部对讲机在15千米之内(含15千米)时能够互相通话,即甲乙离A地的距离分别小于或者等于15千米,可以得到两个不等式组,解这两个不等式组,再将其综合可得x的取值范围,那么两车可以同时与指挥中心用对讲机通话的时间可求.解答:解:(1)乙车的速度150÷2=75(千米/时),90÷75=1.2,∴M点的坐标是:(1.2,0)所以点M表示乙车1.2小时到达A地.(2)甲车的函数图象如图所示.甲车的速度60÷1=60(千米/时),19\n甲车从B到C所用时间为:150÷60=2.5(小时)当0≤x≤1时,y1=60﹣60x当1<x≤2.5时,y1=60x﹣60(3)由题意得,解之得,≤x≤由题意得,,解之得,1≤x≤∴1≤x≤∴两车同时与指挥中心通话的时间为:﹣1=(小时)点评:本题主要考查一次函数在实际中的应用,其中涉及分段函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际. 23.(10分)(2022•大连一模)如图,在△ABC中,∠B=30°,以边AB的中点O为圆心,BO长为半径作⊙O,恰好过顶点C.在半圆AB上取点D,连接CD.(1)∠ACB的度数为 90 °,理由是 直径所对的圆周角是直角 .(2)在半圆AB上取中点D,连接CD.若AC=6,补全图形并求CD的长.考点:圆周角定理;解直角三角形..分析:(1)根据直径所对的圆周角是直角即可求出∠ACB的度数;(2)分两种情况讨论:①C、D两点在直径AB异侧;②C、D两点在直径AB同侧.19\n解答:解:(1)∵AB是⊙O的直径,⊙O过点C,∴∠ACB=90°(直径所对的圆周角是直角).(2)分两种情况讨论:①C、D两点在直径AB异侧,连接BD,过B作BE⊥CD于E.在△ABC中,∵∠ACB=90°,∠ABC=30°,AC=6,∴AB=2AC=12,BC=AC=6.∵在半圆AB上取中点D,∴∠BCD=45°,∴△BCE是等腰直角三角形,∴BE=CE=BC=3.在△BDE中,∵∠BED=90°,∠D=∠A=60°,∴DE=BE=3,∴CD=CE+DE=3+3;②C、D两点在直径AB同侧,连接BD,过B作BE⊥CD于E.在△ABC中,∵∠ACB=90°,∠ABC=30°,AC=6,∴AB=2AC=12,BC=AC=6.∵在半圆AB上取中点D,∴∠BCD=45°,∴△BCE是等腰直角三角形,∴BE=CE=BC=3.在△BDE中,∵∠BED=90°,∠BDE=∠A=60°,∴DE=BE=3,∴CD=CE﹣DE=3﹣3.故答案为:90,直径所对的圆周角是直角.19\n点评:本题考查了圆周角定理,解直角三角形,作辅助线构造直角三角形及分类讨论是解题的关键. 五.解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)(2022•大连一模)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.考点:一次函数综合题..专题:压轴题;分类讨论.分析:(1)要表示出△ODE的面积,要分两种情况讨论,①如果点E在OA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;②如果点E在AB边上,这时△ODE的面积可用长方形OABC的面积减去△OCD、△OAE、△BDE的面积;(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA边上的线段长度是否变化.解答:解:(1)∵四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),∴B(3,1),若直线经过点A(3,0)时,则b=若直线经过点B(3,1)时,则b=若直线经过点C(0,1)时,则b=1①若直线与折线OAB的交点在OA上时,即1<b≤,如图1,此时E(2b,0)∴S=OE•CO=×2b×1=b;②若直线与折线OAB的交点在BA上时,即<b<,如图219\n此时E(3,),D(2b﹣2,1),∴S=S矩﹣(S△OCD+S△OAE+S△DBE)=3﹣[(2b﹣2)×1+×(5﹣2b)•(﹣b)+×3(b﹣)]=b﹣b2,∴S=;(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形根据轴对称知,∠MED=∠NED又∵∠MDE=∠NED,∴∠MED=∠MDE,∴MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题意知,D(2b﹣2,1),E(2b,0),∴DH=1,HE=2b﹣(2b﹣2)=2,∴HN=HE﹣NE=2﹣a,则在Rt△DHN中,由勾股定理知:a2=(2﹣a)2+12,∴a=,∴S四边形DNEM=NE•DH=.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为.19\n点评:本题是一个动态图形中的面积是否变化的问题,看一个图形的面积是否变化,关键是看决定这个面积的几个量是否变化,本题题型新颖,是个不可多得的好题,有利于培养学生的思维能力,但难度较大,具有明显的区分度. 25.(12分)(2022•大连一模)在△ABC中,P是BA延长线上一点,AE是∠CAP的平分线,CE⊥AE于E,BD⊥EA延长线于D.(1)若四边形BCED是正方形(如图①),AB、AC分别于CD、BE相交于点M、N,求证:△ADM≌△AEN.(2)如图②,若AD=kAE,BE、CD相交于F.试探究EF、BF之间的数量关系,并说明理由.(用含k的式子表示)考点:相似形综合题..分析:(1)先根据对顶角相等得出∠DAB=∠PAE,再由AE平分∠PAC,∠DAB=∠EAC,根据四边形BCED是正方形,可知BD=CE,∠BDA=∠CEA=90°,由ASA定理得出△DAB≌△EAC(ASA),故可得出AD=AE,再由BE、CD是正方形BCDE的对角线可知∠MDA=∠NEA,由此即可得出结论;(2)由(1)得∠DAB=∠EAC,再由相似三角形的判定定理得出△ABD∽△ACE,由AD=kAE可知=19\n=k,根据BD∥CE,可得出∠FDB=∠FCE,∠FBD=∠FEC,故△DFB∽△CFE,根据相似三角形的性质可知==k,由此即可得出结论.解答:(1)证明:∵∠DAB=∠PAE,AE平分∠PAC,∴∠DAB=∠EAC,又∵四边形BCED是正方形,∴BD=CE,∠BDA=∠CEA=90°,∴∠ABD=∠ACE,在△DAB与△EAC中,,∴△DAB≌△EAC(ASA),∴AD=AE,∵BE、CD是正方形BCDE的对角线,∴∠MDA=∠NEA,在△ADM与△AEN中,,∴△ADM≌△AEN(SAS);(2)猜想:BF=kEF(或EF=BF).证明:由(1)得∠DAB=∠EAC,∵∠BDA=∠CEA=90°,∴△ABD∽△ACE,∵AD=kAE,∴==k,∵BD∥CE,∴∠FDB=∠FCE,∠FBD=∠FEC,∴△DFB∽△CFE,∴==k,∴EF=kEF(或EF=BF).点评:本题考查的是相似形综合题,涉及到全等三角形及相似三角形的判定与性质,难度适中. 26.(12分)(2022•大连一模)已知,如图,在平面直角坐标系中,点A坐标为(﹣2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;19\n(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.考点:二次函数综合题..专题:代数几何综合题;压轴题.分析:(1)根据点A、B的坐标求出OA、OB,再利用勾股定理列式求出AB,然后求出点C的坐标,再把点A、C的坐标代入抛物线解析式,利用待定系数法求二次函数解析式解答;(2)先求出∠BAO=∠ABO=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠BEO=∠BAO+∠AOE=45°+∠AOE,再根据∠BEO=∠OEF+∠BEF=45°+∠BEF,从而得证;(3)分①当OE=OF时,根据等边对等角可得∠OFE=∠OEF=45°,然后根据三角形的内角和定理求出∠EOF=90°,从而得到点E与点A重合,不符合题意;②当FE=FO时,根据等边对等角可得∠EOF=∠OEF=45°,再根据三角形的内角和定理求出∠EFO=90°,然后根据同旁内角互补,两直线平行求出EF∥AO,再根据两直线平行,同位角相等求出∠BEF=∠BAO=45°,然后求出EF=BF=OF=OB,再写出点E的坐标即可;③当EO=EF时,过点E作EH⊥y轴于点H,利用“角角边”证明△AOE和△BEF全等,根据全等三角形对应边相等可得BE=AO=2,然后求出△BEH是等腰直角三角形,根据等腰直角三角形的性质求出BH=EH=BE,再求出OH,然后写出点E的坐标即可.解答:解:(1)∵A(﹣2,0)B(0,2),∴OA=OB=2,∴AB===2,∵OC=AB,∴OC=2,∴C(0,2),又∵抛物线y=﹣x2+mx+n的图象经过A、C两点,∴,解得,,所以,抛物线的表达式为y=﹣x2﹣x+2;19\n(2)∵OA=OB,∠AOB=90°,∴∠BAO=∠ABO=45°,又∵∠BEO=∠BAO+∠AOE=45°+∠AOE,∠BEO=∠OEF+∠BEF=45°+∠BEF,∴∠BEF=∠AOE;(3)当△EOF为等腰三角形时,分三种情况讨论:①当OE=OF时,∠OFE=∠OEF=45°,在△EOF中,∠EOF=180°﹣∠OEF﹣∠OFE=180°﹣45°﹣45°=90°,又∵∠AOB=90°,则此时点E与点A重合,不符合题意,此种情况不成立;②如图2,当FE=FO时,∠EOF=∠OEF=45°,在△EOF中,∠EFO=180°﹣∠OEF﹣∠EOF=180°﹣45°﹣45°=90°,∴∠AOF+∠EFO=90°+90°=180°,∴EF∥AO,∴∠BEF=∠BAO=45°,又∵∠ABO=45°,∴∠BEF=∠ABO,∴BF=EF,∴EF=BF=OF=OB=×2=1,∴E(﹣1,1);③如图3,当EO=EF时,过点E作EH⊥y轴于点H,在△AOE和△BEF中,,∴△AOE≌△BEF(AAS),∴BE=AO=2,∵EH⊥OB,∠BAO=45°,∴△BEH是等腰直角三角形,∴BH=EH=BE=×2=,∴OH=OB﹣BH=2﹣,∴E(﹣,2﹣),综上所述,当△EOF为等腰三角形时,所求E点坐标为E(﹣1,1)或E(﹣,2﹣).19\n点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,三角形的一个外角等于与它不相邻的两个内角的和的性质,等腰三角形的性质,等腰直角三角形的判定与性质,难点在于(3)要分情况讨论.19
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2012年辽宁省大连市中考物理试卷
2014年辽宁省大连市中考物理试卷
2016年辽宁省大连市中考物理试卷
2015年辽宁省大连市中考物理试卷
2018年辽宁省大连市中考物理试卷
2022年辽宁省大连市中考三模语文试卷
2022年辽宁省大连市中考三模语文试卷
辽宁省大连市2022年中考数学一模试卷(解析版) 新人教版
2022届辽宁省大连市高三一模语文试题(解析版)
辽宁省大连市2022届高三生物二模试题(PDF版附解析)
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 20:04:18
页数:19
价格:¥3
大小:245.37 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划