首页

(全国100套)2022年中考数学试卷分类汇编 一次函数

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/35

2/35

剩余33页未读,查看更多内容需下载

一次函数1、(2022陕西)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0考点:一般考查的是一次函数或者反比例函数的图象性质及待定系数法求函数的解析式。解析:因为A,B是不同象限的点,而正比例函数的图象要不在一、三象限或在二、四象限,由点A与点B的横纵坐标可以知:点A与点B在一、三象限时:横纵坐标的符号应一致,显然此题不可能,点A与点B在二、四象限:点A在四象限得m<0,点B在二象限得n<0,故选D.(另解:就有两种情况一、三或二、四象限,代入特值即可判定)2、(2022陕西)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x-201y3p0A.1B.-1C.3D.-3考点:待定系数法求一次函数的解析式及由自变量的值确定对应的函数值。解析:设y=kx+b,将表格中的对应的x,y的值代入得二元一次方程组,解方程组得k,b的值,回代x=0时,对应的y的值即可。设y=kx+b,解得:k=-1,b=1,所以所以y=-x+1,当x=0时,得y=1,故选A.3、(2022•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点(  ) A.在同一条直线上B.在同一条抛物线上 C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,35\n∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.4、(2022泰安)把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是(  ) A.1<m<7B.3<m<4C.m>1D.m<4考点:一次函数图象与几何变换.分析:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,求出直线y=﹣x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.解答:解:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.故选C.点评:本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0. 5、(2022菏泽)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过(  ) A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限即可.解答:解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,35\n故选D.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号. 6、(2022•徐州)下列函数中,y随x的增大而减少的函数是(  ) A.y=2x+8B.y=﹣2+4xC.y=﹣2x+8D.y=4x考点:一次函数的性质.分析:根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.解答:解:A、B、D选项中的函数解析式k值都是整数,y随x的增大而增大,C选项y=﹣2x+8中,k=﹣2<0,y随x的增大而减少.故选C.点评:本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7、(2022•娄底)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是(  ) A.x<0B.x>0C.x<2D.x>2考点:一次函数的图象.分析:根据函数图象与x轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.解答:解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选C.点评:此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解.8、(2022•湖州)若正比例函数y=kx的图象经过点(1,2),则k的值为(  )A.B.-2C.D.2考点:一次函数图象上点的坐标特征.分析:把点(1,2)代入已知函数解析式,借助于方程可以求得k的值.解答:解:∵正比例函数y=kx的图象经过点(1,2),∴2=k,解得,k=2.35\n故选D.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.9、(2022•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是(  ) A.B.C.D.考点:在数轴上表示不等式的解集;一次函数的性质.分析:由已知条件知x﹣2>0,通过解不等式可以求得x>2.然后把不等式的解集表示在数轴上即可.解答:解:∵一次函数y=x﹣2,∴函数值y>0时,x﹣2>0,解得,x>2,表示在数轴上为:故选B.点评:本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 10、(2022•荆门)若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过(  ) A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限考点:一次函数图象与系数的关系;反比例函数图象上点的坐标特征.3718684分析:首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.解答:解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.点评:此题主要考查了反比例函数图象上点的坐标特征,以及一次函数图象与系数的关系,关键是掌握一次函数图象与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;35\n③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.11、(2022•眉山)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是(  ) A.B.C.D.考点:一次函数图象与系数的关系.专题:存在型.分析:先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.解答:解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一象限,∴函数y=cx+a的图象经过第一、三、四象限.故选C.点评:本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.12、(2022•遵义)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,下列判断中,正确的是(  ) A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2考点:一次函数图象上点的坐标特征.3718684分析:根据正比例函数图象的性质:当k<0时,y随x的增大而减小即可求解.解答:解:∵y=﹣x,k=﹣<0,∴y随x的增大而减小.故选D.点评:本题考查正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.35\n13、(2022•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为(  ) A.x<B.x<3C.x>D.x>3考点:一次函数与一元一次不等式.分析:先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.解答:解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.点评:此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.14、(2022•黔东南州)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是(  ) A.m>﹣1B.m<1C.﹣1<m<1D.﹣1≤m≤1考点:两条直线相交或平行问题.专题:计算题.分析:联立两直线解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可.解答:解:联立,解得,∵交点在第四象限,∴,解不等式①得,m>﹣1,35\n解不等式②得,m<1,所以,m的取值范围是﹣1<m<1.故选C.点评:本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.15、(2022福省福州4分、10)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是(  ) A.a>0B.a<0C.b=0D.ab<0考点:一次函数图象上点的坐标特征.分析:根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.解答:解:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确,故选B.点评:本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力. 16、(2022台湾、22)坐标平面上,有一线性函数过(﹣3,4)和(﹣7,4)两点,判断此函数图形会过哪两象限?(  ) A.第一象限和第二象限B.第一象限和第四象限 C.第二象限和第三象限D.第二象限和第四象限考点:一次函数的性质.分析:根据该线性函数过点(﹣3,4)和(﹣7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.解答:解:∵坐标平面上,有一线性函数过(﹣3,4)和(﹣7,4)两点,∴该函数图象是直线y=4,∴该函数图象经过第一、二象限.故选A.点评:本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线. 17、(2022年潍坊市)一次函数中,当时,<1;当时,35\n>0则的取值范围是____.答案:-2﹤b﹤3考点:一次函数与不等式的关系和不等式组的解法.点评:把和代入,然后根据题意再列出不等式组是解决问题的关键.18、(2022•新疆)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系 y= .考点:分段函数.分析:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.解答:解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.点评:此题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意x的取值范围.19、(2022•包头)如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 y=﹣2x﹣2 .35\n考点:一次函数图象与几何变换.3718684分析:先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.解答:解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣2.故答案为y=﹣2x﹣2.点评:本题考查了一次函数图象与几何变换,要注意利用一次函数的特点,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化. 20、(2022鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.考点:一次函数图象与系数的关系.专题:探究型.分析:先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.解答:解:∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.点评:本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象经过一、二、三象限. 21、(2022•常州)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k= 2 ,b= ﹣2 .考点:待定系数法求一次函数解析式.3718684分析:把点A、B的坐标代入函数解析式,利用待定系数法求一次函数解析式解答即可.解答:解:∵一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),∴,解得.故答案为:2,﹣2.点评:本题主要考查了待定系数法求一次函数解析式,待定系数法是求函数解析式常用的方法之一,要熟练掌握并灵活运用.35\n22、(2022•钦州)请写出一个图形经过一、三象限的正比例函数的解析式 y=x(答案不唯一). .考点:正比例函数的性质.3718684分析:先设出此正比例函数的解析式,再根据正比例函数的图象经过一、三象限确定出k的符号,再写出符合条件的正比例函数即可.解答:解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过一、三象限,∴k>0,∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).故答案为:y=x(答案不唯一).点评:本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时函数的图象经过一、三象限.23、(2022•广安)已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2022=  .考点:一次函数图象上点的坐标特征.3718684专题:规律型.分析:令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出Sn,再利用拆项法整理求解即可.解答:解:令x=0,则y=,令y=0,则﹣x+=0,解得x=,所以,Sn=••=(﹣),所以,S1+S2+S3+…+S2022=(﹣+﹣+﹣+…+﹣)=(﹣)=.故答案为:.点评:本题考查的是一次函数图象上点的坐标特点,表示出Sn,再利用拆项法写成两个数的差是解题的关键,也是本题的难点.24、(2022年广州市)一次函数若随的增大而增大,则的取值范围是___________.分析:根据图象的增减性来确定(m+2)的取值范围,从而求解35\n解:∵一次函数y=(m+2)x+1,若y随x的增大而增大,∴m+2>0,解得,m>﹣2.故答案是:m>﹣2.点评:本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.25、(2022•株洲)已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是  .考点:列表法与树状图法;一次函数图象与系数的关系.3分析:列表得出所有等可能的结果数,找出a与b都为正数,即为直线y=ax+b不经过第四象限的情况数,即可求出所求的概率.解答:解:列表如下:﹣2﹣112﹣2(﹣1,﹣2)(1,﹣2)(2,﹣2)﹣1(﹣2,﹣1)(1,﹣1)(2,﹣1)1(﹣2,1)(﹣1,1)(2,1)2(﹣2,2)(﹣1,2)(1,2)所有等可能的情况数有12种,其中直线y=ax+b不经过第四象限情况数有2种,则P==.故答案为:点评:此题考查了列表法与树状图法,以及一次函数图象与系数的关系,用到的知识点为:概率=所求情况数与总情况数之比.26、(2022•资阳)在一次函数y=(2﹣k)x+1中,y随x的增大而增大,则k的取值范围为 k<2 .考点:一次函数图象与系数的关系.分析:根据一次函数图象的增减性来确定(2﹣k)的符号,从而求得k的取值范围.解答:解:∵在一次函数y=(2﹣k)x+1中,y随x的增大而增大,∴2﹣k>0,∴k<2.故答案是:k<2.点评:本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.27、(13年山东青岛、12)如图,一个正比例函数图像与一次函数的图像相交于点P,则这个正比例函数的表达式是____________第12题35\n答案:y=-2x解析:交点P的纵坐标为y=2,代入一次函数解析式:2=-x+1,所以,x=-1即P(-1,2),代入正比例函数,y=kx,得k-2,所以,y=-2x28、(2022•湖州)如图,已知点A是第一象限内横坐标为2的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是  .考点:一次函数综合题.分析:(1)首先,需要证明线段B0Bn就是点B运动的路径(或轨迹),如答图②所示.利用相似三角形可以证明;(2)其次,如答图①所示,利用相似三角形△AB0Bn∽△AON,求出线段B0Bn的长度,即点B运动的路径长.解答:解:由题意可知,OM=,点N在直线y=﹣x上,AC⊥x轴于点M,则△OMN为等腰直角三角形,ON=OM=×=.如答图①所示,设动点P在O点(起点)时,点B的位置为B0,动点P在N点(起点)时,点B的位置为Bn,连接B0Bn.∵AO⊥AB0,AN⊥ABn,∴∠OAC=∠B0ABn,又∵AB0=AO•tan30°,ABn=AN•tan30°,∴AB0:AO=ABn:AN=tan30°,∴△AB0Bn∽△AON,且相似比为tan30°,∴B0Bn=ON•tan30°=×=.现在来证明线段B0Bn就是点B运动的路径(或轨迹).如答图②所示,当点P运动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,B0Bi.∵AO⊥AB0,AP⊥ABi,∴∠OAP=∠B0ABi,又∵AB0=AO•tan30°,ABi=AP•tan30°,∴AB0:AO=ABi:AP,∴△AB0Bi∽△AOP,∴∠AB0Bi=∠AOP.35\n又∵△AB0Bn∽△AON,∴∠AB0Bn=∠AOP,∴∠AB0Bi=∠AB0Bn,∴点Bi在线段B0Bn上,即线段B0Bn就是点B运动的路径(或轨迹).综上所述,点B运动的路径(或轨迹)是线段B0Bn,其长度为.故答案为:.点评:本题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大.本题的要点有两个:首先,确定点B的运动路径是本题的核心,这要求考生有很好的空间想象能力和分析问题的能力;其次,由相似关系求出点B运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中.29、(2022•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是 (1,3) .考点:一次函数图象上点的坐标特征;坐标与图形变化-对称.3718684分析:根据轴对称的性质可得OB=OB′,然后求出AB′,再根据直线y=x+b可得AB′=B′C′,然后写出点C′的坐标即可.解答:解:∵A(﹣2,0),B(﹣1,0),∴AO=2,OB=1,∵△A′B′C′和△ABC关于y轴对称,∴OB=OB′=1,35\n∴AB′=AO+OB′=2+1=3,∵直线y=x+b经过点A,C′,∴AB′=B′C′=3,∴点C′的坐标为(1,3).故答案为:(1,3).点评:本题考查了一次函数图象上点的坐标特征,坐标与图形变化﹣对称,根据直线解析式的k值等于1得到AB′=B′C′是解本题的关键.30、(2022•内江)如图,已知直线l:y=x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为 (884736,0) .考点:一次函数综合题.分析:本题需先求出OA1和OA2的长,再根据题意得出OAn=4n,求出OA4的长等于44,即可求出A4的坐标.解答:解:∵直线l的解析式是y=x,∴∠NOM=60°.∵点M的坐标是(2,0),NM∥x轴,点N在直线y=x上,∴NM=2,∴ON=2OM=4.又∵NM1⊥l,即∠ONM1=90°∴OM1=2ON=41OM=8.同理,OM2=4OM1=42OM,OM3=4OM2=4×42OM=43OM,…OM10=410OM=884736.∴点M10的坐标是(884736,0).故答案是:(884736,0).35\n点评:本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.31、(2022•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为 24 .考点:一次函数综合题.分析:根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CD是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.解答:解:∵直线y=kx﹣3k+4必过点D(3,4),∴最短的弦CD是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.点评:此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.32、(2022•昆明)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为 y=﹣2x .35\n考点:待定系数法求正比例函数解析式.分析:把点A的坐标代入函数解析式求出k值即可得解.解答:解:∵正比例函数y=kx的图象经过点A(﹣1,2),∴﹣k=2,解得k=﹣2,∴正比例函数的解析式为y=﹣2x.故答案为:y=﹣2x.点评:本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可,比较简单.33、(2022成都市)已知点(3,5)在直线(a,b为常数,且)上,则的值为__________.答案:解析:将(3,5)代入直线方程有3a+b=5∴b-5=-3a,∴b≠5∴34、(2022•天津)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是 k>0 .考点:一次函数图象与系数的关系.3718684分析:根据一次函数图象所经过的象限确定k的符号.解答:解:∵一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k>0.故填:k>0.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.35、(5-7函数的综合与创新·2022东营中考)如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;……按此作法继续下去,则点A2022的坐标为.35\n17.(注:以上两答案任选一个都对)解析:因为直线与x轴的正方向的夹角为30°,所以,在中,因为OA=1,所以OB=2,中,所以=4,即点的坐标为(0,4),同理=8,所在中,=16,即点的坐标为依次类推,点的坐标为或.36、(2022•铁岭)如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则Cn的坐标是 (﹣×4n﹣1,4n) .考点:一次函数综合题;平行四边形的性质.3718684专题:规律型.分析:先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,4135\n);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得Cn的坐标是(﹣×4n﹣1,4n).解答:解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x.∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则Cn的坐标是(﹣×4n﹣1,4n).故答案为(﹣×4n﹣1,4n).点评:本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.37、(2022年武汉)直线经过点(3,5),求关于的不等式≥0的解集.解析:∵直线经过点(3,5)∴.35\n∴.即不等式为≥0,解得≥.38、(2022年河北)如图15,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.解析:(1)直线交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t当t=3时,b=4∴(2)当直线过M(3,2)时解得b=55=1+t∴t=4当直线过N(4,4)时解得b=88=1+t∴t=7∴4<t<7(3)t=1时,落在y轴上;t=2时,落在x轴上;35\n39、(2022•牡丹江压轴题)如图,平面直角坐标系中,矩形OABC的对角线AC=12,tan∠ACO=,(1)求B、C两点的坐标;(2)把矩形沿直线DE对折使点C落在点A处,DE与AC相交于点F,求直线DE的解析式;(3)若点M在直线DE上,平面内是否存在点N,使以O、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.考点:一次函数综合题.3718684分析:(1)利用三角函数求得OA以及OC的长度,则C、B的坐标即可得到;(2)直线DE是AC的中垂线,利用待定系数法以及互相垂直的两直线的关系即可求得DE的解析式;(3)分当FM是菱形的边和当OF是对角线两种情况进行讨论.利用三角函数即可求得N的坐标.解答:解:(1)在直角△OAC中,tan∠ACO=,∴设OA=x,则OC=3x,根据勾股定理得:(3x)2+(x)2=AC2,即9x2+3x2=144,解得:x=2.故C的坐标是:(6,0),B的坐标是(6,6);(2)直线AC的斜率是:﹣=﹣,则直线DE的斜率是:.F是AC的中点,则F的坐标是(3,3),设直线DE的解析式是y=x+b,则9+b=3,解得:b=﹣6,则直线DE的解析式是:y=x﹣6;(3)OF=AC=6,∵直线DE的斜率是:.∴DE与x轴夹角是60°,当FM是菱形的边时(如图1),ON∥FM,则∠NOC=60°或120°.当∠NOC=60°时,过N作NG⊥y轴,则NG=ON•sin30°=6×=3,35\nOG=ON•cos30°=6×=3,则N的坐标是(3,3);当∠NOC=120°时,与当∠NOC=60°时关于原点对称,则坐标是(﹣3,﹣3);当OF是对角线时(如图2),MN关于OF对称.∵F的坐标是(3,3),∴∠FOD=∠NOF=30°,在直角△ONH中,OH=OF=3,ON===2.作NL⊥y轴于点L.在直角△ONL中,∠NOL=30°,则NL=ON=,OL=ON•cos30°=2×=3.故N的坐标是(,3).则N的坐标是:(3,3)或(﹣3,﹣3)或(,3).40、(2022•绥化压轴题)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.35\n考点:一次函数综合题分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.解答:解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,则A(8,0).∵点A、C都在直线MN上,∴,解得,,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);35\n③当PB=BC时,(a﹣8)2+(﹣a+6﹣6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).点评:本题考查了一次函数综合题.其中涉及到的知识点有:待定系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质.解答(3)题时,要分类讨论,防止漏解.另外,解答(3)题时,还利用了“数形结合”的数学思想.41、(2022•常州压轴题)在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.(1)写出A、C两点的坐标;(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由.考点:一次函数综合题3718684分析:(1)利用一次函数图象上点的坐标特征求解;35\n(2)如答图1所示,解题关键是求出点P、点Q的坐标,然后利用PA=2PQ,列方程求解;(3)如答图2所示,利用相似三角形,将已知的比例式转化为:,据此列方程求出m的值.解答:解:(1)在直线解析式y=2x+2中,令y=0,得x=﹣1;x=0,得y=2,∴A(﹣1,0),C(0,2);(2)当0<m<1时,依题意画出图形,如答图1所示.∵PE=CE,∴直线l是线段PC的垂直平分线,∴MC=MP,又C(0,2),M(0,m),∴P(0,2m﹣2);直线l与y=2x+2交于点D,令y=m,则x=,∴D(,m),设直线DP的解析式为y=kx+b,则有,解得:k=﹣2,b=2m﹣2,∴直线DP的解析式为:y=﹣2x+2m﹣2.令y=0,得x=m﹣1,∴Q(m﹣1,0).已知△PAQ是以P为顶点的倍边三角形,由图可知,PA=2PQ,∴,即,整理得:(m﹣1)2=,解得:m=(>1,不合题意,舍去)或m=,∴m=.(3)当1<m<2时,假设存在实数m,使CD•AQ=PQ•DE.依题意画出图形,如答图2所示.由(2)可知,OQ=m﹣1,OP=2m﹣2,由勾股定理得:PQ=(m﹣1);∵A(﹣1,0),Q(m﹣1,0),B(a,0),∴AQ=m,AB=a+1;∵OA=1,OC=2,由勾股定理得:CA=.∵直线l∥x轴,∴△CDE∽△CAB,∴;又∵CD•AQ=PQ•DE,∴,∴,即,解得:m=.∵1<m<2,∴当0<a≤1时,m≥2,m不存在;当a>1时,m=.35\n∴当1<m<2时,若a>1,则存在实数m=,使CD•AQ=PQ•DE;若0<a≤1,则m不存在.点评:本题是代数几何综合题,考查了坐标平面内一次函数的图象与性质、待定系数法、相似三角形、勾股定理、解方程等知识点.题目综合性较强,有一定的难度.第(3)问中,注意比例式的转化,这样可以简化计算.42、(2022•滨州压轴题)根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°.①求直线l3的函数表达式;②把直线l3绕原点O按逆时针方向旋转90°得到的直线l4,求直线l4的函数表达式.(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=﹣垂直的直线l5的函数表达式.35\n考点:一次函数综合题.分析:(1)根据题意可直接得出l2的函数表达式;(2)①先设直线l3的函数表达式为y=k1x(k1≠0),根据过原点的直线l3向上的方向与x轴的正方向所成的角为30°,直线过一、三象限,求出k1=tan30°,从而求出直线l3的函数表达式;②根据l3与l4的夹角是为90°,求出l4与x轴的夹角是为60°,再设l4的解析式为y=k2x(k2≠0),根据直线l4过二、四象限,求出k2=﹣tan60°,从而求出直线l4的函数表达式;(3)通过观察(1)(2)中的两个函数表达式可得出它们的函数表达式中自变量的系数互为负倒数关系,再根据这一关系即可求出与直线y=﹣垂直的直线l5的函数表达式.解答:解:(1)根据题意得:y=﹣x;(2)①设直线l3的函数表达式为y=k1x(k1≠0),∵过原点的直线l3向上的方向与x轴的正方向所成的角为30°,直线过一、三象限,∴k1=tan30°=,∴直线l3的函数表达式为y=x;②∵l3与l4的夹角是为90°,∴l4与x轴的夹角是为60°,设l4的解析式为y=k2x(k2≠0),∵直线l4过二、四象限,∴k2=﹣tan60°=﹣,∴直线l4的函数表达式为y=﹣x;(3)通过观察(1)(2)中的两个函数表达式可知,当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数关系,∴过原点且与直线y=﹣垂直的直线l5的函数表达式为y=5x.35\n点评:此题考查了一次函数的综合,用到的知识点是锐角三角函数、一次函数的解析式的求法,关键是根据锐角三角函数求出k的值,做综合性的题要与几何图形相结合,更直观一些. 43、(2022•攀枝花压轴题)如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为 (﹣4,0) ,直线l的解析式为 y=x+4 ;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.考点:一次函数综合题.分析:(1)利用梯形性质确定点D的坐标,利用sin∠DAB=特殊三角函数值,得到△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D的坐标,利用待定系数法求出直线l的解析式;(2)解答本问,需要弄清动点的运动过程:①当0<t≤1时,如答图1所示;②当1<t≤2时,如答图2所示;③当2<t<时,如答图3所示.35\n(3)本问考查二次函数与一次函数在指定区间上的极值,根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值;(4)△QMN为等腰三角形的情形有两种,需要分类讨论,避免漏解.解答:解:(1)∵C(7,4),AB∥CD,∴D(0,4).∵sin∠DAB=,∴∠DAB=45°,∴OA=OD=4,∴A(﹣4,0).设直线l的解析式为:y=kx+b,则有,解得:k=1,b=4,∴y=x+4.∴点A坐标为(﹣4,0),直线l的解析式为:y=x+4.(2)在点P、Q运动的过程中:①当0<t≤1时,如答图1所示:过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.过点Q作QE⊥x轴于点E,则BE=BQ•cos∠CBF=5t•=3t.∴PE=PB﹣BE=(14﹣2t)﹣3t=14﹣5t,S=PM•PE=×2t×(14﹣5t)=﹣5t2+14t;②当1<t≤2时,如答图2所示:过点C、Q分别作x轴的垂线,垂足分别为F,E,35\n则CQ=5t﹣5,PE=AF﹣AP﹣EF=11﹣2t﹣(5t﹣5)=16﹣7t,S=PM•PE=×2t×(16﹣7t)=﹣7t2+16t;③当点M与点Q相遇时,DM+CQ=CD=7,即(2t﹣4)+(5t﹣5)=7,解得t=.当2<t<时,如答图3所示:MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,S=PM•MQ=×4×(16﹣7t)=﹣14t+32.(3)①当0<t≤1时,S=﹣5t2+14t=﹣5(t﹣)2+,∵a=﹣5<0,抛物线开口向下,对称轴为直线t=,∴当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;②当1<t≤2时,S=﹣7t2+16t=﹣7(t﹣)2+,∵a=﹣7<0,抛物线开口向下,对称轴为直线t=,∴当t=时,S有最大值,最大值为;③当2<t<时,S=﹣14t+32∵k=﹣14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=时,S=0,∴0<S<4.综上所述,当t=时,S有最大值,最大值为.35\n(4)△QMN为等腰三角形,有两种情形:①如答图4所示,点M在线段CD上,MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,MN=DM=2t﹣4,由MN=MQ,得16﹣7t=2t﹣4,解得t=;②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=.故当t=或t=时,△QMN为等腰三角形.点评:本题是典型的运动型综合题,难度较大,解题关键是对动点运动过程有清晰的理解.第(3)问中,考查了指定区间上的函数极值,增加了试题的难度;另外,分类讨论的思想贯穿(2)﹣(4)问始终,同学们需要认真理解并熟练掌握.44、(2022•宁波压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.考点:一次函数综合题.分析:(1)设直线AB的函数解析式为y=kx+4,把(4,0)代入即可;35\n(2)①先证出△BOD≌△COD,得出∠BOD=∠CDO,再根据∠CDO=∠ADP,即可得出∠BDE=∠ADP,②先连结PE,根据∠ADP=∠DEP+∠DPE,∠BDE=∠ABD+∠OAB,∠ADP=∠BDE,∠DEP=∠ABD,得出∠DPE=∠OAB,再证出∠DFE=∠DPE=45°,最后根据∠DEF=90°,得出△DEF是等腰直角三角形,从而求出DF=DE,即y=x;(3)当=2时,过点F作FH⊥OB于点H,则∠DBO=∠BFH,再证出△BOD∽△FHB,===2,得出FH=2,OD=2BH,再根据∠FHO=∠EOH=∠OEF=90°,得出四边形OEFH是矩形,OE=FH=2,EF=OH=4﹣OD,根据DE=EF,求出OD的长,从而得出直线CD的解析式为y=x+,最后根据求出点P的坐标即可;当=时,连结EB,先证出△DEF是等腰直角三角形,过点F作FG⊥OB于点G,同理可得△BOD∽△FGB,===,得出FG=8,OD=BG,再证出四边形OEFG是矩形,求出OD的值,再求出直线CD的解析式,最后根据即可求出点P的坐标.解答:解:(1)设直线AB的函数解析式为y=kx+4,代入(4,0)得:4k+4=0,解得:k=﹣1,则直线AB的函数解析式为y=﹣x+4;(2)①由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BOD≌△COD,∴∠BOD=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,②连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,35\n∵DF是⊙Q的直径,∴∠DEF=90°,∴△DEF是等腰直角三角形,∴DF=DE,即y=x;(3)当BD:BF=2:1时,过点F作FH⊥OB于点H,∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,∴∠DBO=∠BFH,又∵∠DOB=∠BHF=90°,∴△BOD∽△FHB,∴===2,∴FH=2,OD=2BH,∵∠FHO=∠EOH=∠OEF=90°,∴四边形OEFH是矩形,∴OE=FH=2,∴EF=OH=4﹣OD,∵DE=EF,∴2+OD=4﹣OD,解得:OD=,∴点D的坐标为(0,),∴直线CD的解析式为y=x+,由得:,则点P的坐标为(2,2);当=时,连结EB,同(2)①可得:∠ADB=∠EDP,而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,∵∠DEP=∠DPA,∴∠DBE=∠DAP=45°,∴△DEF是等腰直角三角形,过点F作FG⊥OB于点G,同理可得:△BOD∽△FGB,∴===,∴FG=8,OD=BG,∵∠FGO=∠GOE=∠OEF=90°,∴四边形OEFG是矩形,∴OE=FG=8,∴EF=OG=4+2OD,∵DE=EF,35\n∴8﹣OD=4+2OD,OD=,∴点D的坐标为(0,﹣),直线CD的解析式为:y=﹣x﹣,由得:,∴点P的坐标为(8,﹣4),综上所述,点P的坐标为(2,2)或(8,﹣4).点评:此题考查了一次函数的综合,用到的知识点是一次函数、矩形的性质、圆的性质,关键是综合运用有关知识作出辅助线,列出方程组.45、(2022济宁压轴题35\n)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2,如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4;(3)如图1,当Q在P点的左边时,35\n∵OQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值为:=4,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QE=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴0≤t≤4,当t=﹣=时,S矩形PEFQ的最小,∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16,综上所述,当t=4时,S矩形PEFQ的最大值为:16.点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键. 35

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:07:51 页数:35
价格:¥3 大小:466.93 KB
文章作者:U-336598

推荐特供

MORE