上海市徐汇、松江、金山区2022届高三数学下学期二模试题 文(上海徐汇、松江、金山二模)上沪教版
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
2022学年第二学期徐汇、松江、金山区高三年级数学学科学习能力诊断卷(文科试卷)(考试时间:120分钟,满分150分)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若函数的反函数图像过点,则=.2.若直线与直线平行,则=.3.若正整数使得行列式,则.4.已知函数的值域为,集合,则.5.已知,且,则=___________.6.已知圆锥的母线长为,侧面积为,则此圆锥的体积为__________(结果保留).开始i=1,S=0S=S+输出S结束否是第8题图20227.已知(为虚数单位)是一元二次方程(均为实数)的一个根,则=__________.8.如图给出的是计算的值的一个程序框图,图中空白执行框内应填入.9.某国际体操比赛,我国将派5名正式运动员和3名替补运动员参加,最终将有3人上场比赛,其中甲、乙两名替补运动员均不上场比赛的概率是(结果用最简分数表示).10.满足条件的目标函数的最大值是.11.在二项式的展开式中,常数项的值是,则=.第13题图12.已知椭圆内有两点为椭圆上一点,则的最大值为.13.如图,有以下命题成立:设点是线段的三等分点,则有9.将此命题推广,设点是线段的六等分点,则.14.如图,对正方形纸片进行如下操作:第一步,过点任作一条直线与边相交于点,记;第二步,作的平分线交边于点,记;第三步,作的平分线交边于点,记;按此作法从第二步起重复以上步骤……,得到,则用和表示的递推关系式是.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知为实数,命题甲:,命题乙:,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.已知函数,设,则是()A.奇函数,在上单调递减B.奇函数,在上单调递增C.偶函数,在上递减,在上递增D.偶函数,在上递增,在上递减9xyzO43417.如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,45344443且垂直于底面,该三棱锥的主视图是()A.B.C.D.18.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22(0C)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):①甲地:5个数据的中位数为,众数为;②乙地:5个数据的中位数为,总体均值为;③丙地:5个数据中有一个数据是,总体均值为,总体方差为;则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)在中,分别是角的对边,且,若的面积,求的值.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为.轮船的最大速度为海里/小时.当船速为海里/小时,它的燃料费是每小时元,其余航行运作费用(不论速度如何)总计是每小时元.假定运行过程中轮船以速度匀速航行.9(1)求的值;(2)求该轮船航行海里的总费用(燃料费+航行运作费用)的最小值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,已知是正三棱柱,它的底面边长和侧棱长都是.(1)求异面直线与所成角的大小(结果用反三角函数值表示);(2)求三棱锥的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知双曲线的中心在原点,是它的一个顶点,是它的一条渐近线的一个方向向量.(1)求双曲线的方程;(2)若过点()任意作一条直线与双曲线交于两点(都不同于点),求的值;(3)对于双曲线G:,为它的右顶点,为双曲线G上的两点(都不同于点),且,求证:直线与9轴的交点是一个定点.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列的前项和为,数列是首项为,公差为的等差数列.(1)求数列的通项公式;(2)设,对任意的正整数,将集合中的三个元素排成一个递增的等差数列,其公差为,求;(3)对(2)题中的,设,,动点满足,点的轨迹是函数的图像,其中是以为周期的周期函数,且当时,,动点的轨迹是函数的图像,求.9数学(文)参考答案一.填空题:(本题共有14题,每小题4分)1.2.3.424.5.6.7.8.9.10.11.12.;13.;14.二.选择题:(本题共有4小题,每小题5分)15.B16.B17.B18.C三.解答题19.(本题12分)解:由条件可知,……………2分即,……………4分………………………………8分由余弦定理,得………………10分于是,.………………………………………12分20.(本题14分)本题共有2小题,第(1)小题6分,第(2)小题8分.解:(1)由题意得燃料费,………………………………2分把=10,代入得=0.96.………………………………………………6分(2),……………………………………9分=,………………………11分其中等号当且仅当时成立,解得,……………13分所以,该轮船航行海里的总费用的最小值为2400(元).……………………14分21.(本题12分)本题共有2题,第(1)小题6分,第(2)小题8分.(1),………………………………………1分连接,则为异面直线所成角.………3分9由题意得……………………………………4分………5分所以,异面直线与所成角的大小为……………………………………6分(2)由题意得,…………………………………………………………9分的面积,……………………………………12分,三棱锥的体积为.………………………………………14分22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.解:(1)设双曲线C的方程为,则,…….2分又,得,所以,双曲线C的方程为.………….4分(2)当直线垂直于轴时,其方程为,的坐标为(,)、(,),,所以=0.………………..6分当直线不与轴垂直时,设此直线方程为,由得.设,则,,……………..8分故.……....9分9++=0.综上,=0.………………10分(3)设直线的方程为:,由,得,设,则,,…………12分由,得,即,………………14分,化简得,或(舍),……………………………………….15分所以,直线过定点(,0).………………………………..16分23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.解:(1)由条件得,即…………………………..2分所以.……………………………………………………..4分(2)由(1)可知,所以,.…………………………..7分由及得依次成递增的等差数列,…………………………..9分所以.…………………………9..10分(3)由(2)得,即…………………..12分当时,,由是以为周期的周期函数得,,即.………………..14分设是函数图象上的任意点,并设点的坐标为,则.………………..16分而,于是,,所以,.……………..18分9
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)