首页

2022年高考数学一轮复习第8章立体几何3空间点直线平面之间的位置关系课件(人教A版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/38

2/38

3/38

4/38

剩余34页未读,查看更多内容需下载

8.3空间点、直线、平面之间的位置关系\n-2-知识梳理双基自测23416571.平面的基本性质公理1:如果一条直线上的在一个平面内,那么这条直线在此平面内.公理2:过的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有过该点的公共直线.两点不在一条直线上一条\n-3-知识梳理双基自测23416572.直线与直线的位置关系平行相交任何(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a'∥a,b'∥b,把a'与b'所成的锐角(或直角)叫做异面直线a,b所成的角(或夹角).\n-4-知识梳理双基自测23416573.公理4平行于的两条直线互相平行.同一条直线\n-5-知识梳理双基自测23416574.定理空间中如果两个角的两边分别对应平行,那么这两个角.相等或互补\n-6-知识梳理双基自测23416575.直线与平面的位置关系直线与平面的位置关系有、、__________三种情况.平行相交在平面内\n-7-知识梳理双基自测23416576.平面与平面的位置关系平面与平面的位置关系有、两种情况.平行相交\n-8-知识梳理双基自测23416577.常用结论(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行.②过直线外一点有且只有一个平面与已知直线垂直.③过平面外一点有且只有一个平面与已知平面平行.④过平面外一点有且只有一条直线与已知平面垂直.(2)异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.\n-9-知识梳理双基自测2341657(3)确定平面的三个推论①推论1:经过一条直线和这条直线外一点,有且只有一个平面.②推论2:经过两条相交直线,有且只有一个平面.③推论3:经过两条平行直线,有且只有一个平面.(4)异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.\n2-10-知识梳理双基自测34151.下列结论正确的打“√”,错误的打“×”.(1)两个不重合的平面只能把空间分成四个部分.()(2)两个平面α,β有一个公共点A,就说α,β相交于A点,记作α∩β=A.()(3)已知a,b是异面直线,直线c平行于直线a,那么c与b不可能是平行直线.()(4)如果两个不重合的平面α,β有一条公共直线a,那么就说平面α,β相交,并记作α∩β=a.()(5)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.()××√√×\n-11-知识梳理双基自测234152.如图,在正方体ABCD-A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线与直线EF相交的是()A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C1答案解析解析关闭只有B1C1与EF在同一平面内,是相交的.选项A,B,C中直线与EF都是异面直线,故选D答案解析关闭D\n-12-知识梳理双基自测234153.已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.其中真命题有(写出所有真命题的序号).②④\n-13-知识梳理双基自测234154.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中真命题是.(填序号)①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b③④\n-14-知识梳理双基自测234155.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件时,四边形EFGH为菱形;(2)当AC,BD满足条件时,四边形EFGH是正方形.答案解析解析关闭答案解析关闭\n-15-考点1考点2考点3例1如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点,求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.思考如何利用平面的基本性质证明点共线和线共点?\n-16-考点1考点2考点3证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥CD1,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.\n-17-考点1考点2考点3解题心得1.点线共面问题的证明方法:(1)纳入平面法:先确定一个平面,再证有关点、线在此平面内;(2)辅助平面法:先证有关点、线确定平面α,再证其余点、线确定平面β,最后证明平面α,β重合.2.证明多线共点问题,常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上.证交点在第三条直线上时,第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.\n-18-考点1考点2考点3对点训练1如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线.\n-19-考点1考点2考点3证明(1)∵E,F分别为AB,AD的中点,∴EF∥BD.∴GH∥BD,∴EF∥GH.∴E,F,G,H四点共面.(2)∵EG∩FH=P,P∈EG,EG⊂平面ABC,∴P∈平面ABC.同理P∈平面ADC.∴P为平面ABC与平面ADC的公共点.又平面ABC∩平面ADC=AC,∴P∈AC,∴P,A,C三点共线.\n-20-考点1考点2考点3例2(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)(2017全国Ⅱ,理10)已知在直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()思考如何借助空间图形确定两直线位置关系?DC\n-21-考点1考点2考点3解析:(1)l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.\n-22-考点1考点2考点3(2)方法一如图,取AB,BB1,B1C1的中点M,N,P,连接MN,NP,PM,可知AB1与BC1所成的角等于MN与NP所成的角.\n-23-考点1考点2考点3方法二把三棱柱ABC-A1B1C1补成四棱柱ABCD-A1B1C1D1,如图,连接C1D,BD,则AB1与BC1所成的角为∠BC1D.\n-24-考点1考点2考点3解题心得解题时一定要注意选项中的重要字眼“至少”“至多”,否则很容易出现错误.解决空间点、线、面的位置关系这类问题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.\n-25-考点1考点2考点3对点训练2(1)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A\n-26-考点1考点2考点3解析:(1)(方法一)∵α∥平面CB1D1,平面ABCD∥平面A1B1C1D1,α∩平面ABCD=m,平面CB1D1∩平面A1B1C1D1=B1D1,∴m∥B1D1.∵α∥平面CB1D1,平面ABB1A1∥平面DCC1D1,α∩平面ABB1A1=n,平面CB1D1∩平面DCC1D1=CD1,∴n∥CD1.∴B1D1,CD1所成的角等于m,n所成的角,即∠B1D1C等于m,n所成的角.∵△B1D1C为正三角形,∴∠B1D1C=60°,\n-27-考点1考点2考点3(方法二)由题意画出图形,如图所示,将正方体ABCD-A1B1C1D1平移,补形为两个全等的正方体如图,易证平面AEF∥平面CB1D1,所以平面AEF即为平面α,m即为AE,n即为AF,所以AE与AF所成的角即为m与n所成的角.因为△AEF是正三角形,所以∠EAF=60°,故m,n所成角的正弦值为.\n-28-考点1考点2考点3(2)如图,G,N,M,H分别是三棱柱的顶点或所在棱的中点,则直线GH,MN是异面直线的图形有.(填上所有正确答案的序号)②④\n-29-考点1考点2考点3解析:(2)题图①中,直线GH∥MN;题图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;题图③中,连接MG,易知GM∥HN,因此GH与MN共面;题图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以题图②,④中GH与MN异面.\n-30-考点1考点2考点3例3设直线m与平面α相交但不垂直,则下列说法中正确的是()A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直思考如何借助空间图形确定线面位置关系?答案解析解析关闭答案解析关闭\n-31-考点1考点2考点3解题心得解决这类问题的关键就是熟悉直线与直线、直线与平面、平面与平面的各种位置关系及相应的公理定理,归纳整理平面几何中成立但立体几何中不成立的命题,并在解题过程中注意避免掉入由此设下的陷阱.判断时可由易到难进行,一般是作图分析,构造出符合题设条件的图形或反例来判断.\n-32-考点1考点2考点3对点训练3α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中真命题有.(填写所有真命题的编号)答案解析解析关闭对于①,若m⊥n,m⊥α,n∥β,则α,β的位置关系无法确定,故错误;对于②,因为n∥α,所以过直线n作平面γ与平面α相交于直线c,则n∥c.因为m⊥α,所以m⊥c,所以m⊥n,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故真命题的编号有②③④.答案解析关闭②③④\n-33-思想方法——构造模型判断空间线面的位置关系空间点、直线、平面的位置关系是立体几何的理论基础,高考常设置选择题或填空题,考查直线、平面位置关系的判断和异面直线所成的角的求法.在判断线、面位置关系时,有时可以借助常见的几何体作出判断.这类试题一般称为空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.\n-34-典例(1)已知空间三条直线l,m,n,若l与m异面,且l与n异面,则()A.m与n异面B.m与n相交C.m与n平行D.m与n异面、相交、平行均有可能(2)在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有条.\n-35-(3)已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有真命题的序号是.答案:(1)D(2)无数(3)①④\n-36-解析:(1)在如图所示的长方体中,m,n1与l都异面,但是m∥n1,所以A,B错误;m,n2与l都异面,且m,n2也异面,所以C错误.(2)(方法一)如图,在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有一个交点N,当M取不同的位置时就确定不同的平面,从而与CD有不同的交点N,而直线MN与这三条异面直线都有交点,所以在空间中与这三条直线都相交的直线有无数条.\n-37-(方法二)在A1D1上任取一点P,过点P与直线EF作一个平面α,因CD与平面α不平行,所以它们相交,设它们交于点Q,连接PQ(图略),则PQ与EF必然相交,即PQ为所求直线.由点P的任意性,知有无数条直线与三条直线A1D1,EF,CD都相交.(3)对于①,若m⊥α,且m⊥n,则n∥α或n⊂α,又n⊥β,所以α⊥β,故①正确;对于②,平面α,β可能垂直,如图a所示,故②不正确;对于③,平面α,β可能垂直,如图b所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图c所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.\n-38-反思提升1.构造法实质上是结合题意构造符合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.2.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-22 11:00:04 页数:38
价格:¥3 大小:994.16 KB
文章作者:随遇而安

推荐特供

MORE