首页

2019年湖北省鄂州市中考数学试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/23

2/23

剩余21页未读,查看更多内容需下载

2019年湖北省鄂州市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2019的绝对值是(  )A.2019B.﹣2019C.12019D.−120192.(3分)下列运算正确的是(  )A.a3•a2=a6B.a7÷a3=a4C.(﹣3a)2=﹣6a2D.(a﹣1)2=a2﹣13.(3分)据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学记数法可表示为(  )A.0.1031×106B.1.031×107C.1.031×108D.10.31×1094.(3分)如图是由7个小正方体组合成的几何体,则其左视图为(  )A.B.C.D.5.(3分)如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为(  )\nA.45°B.55°C.65°D.75°6.(3分)已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为(  )A.3B.4.5C.5.2D.67.(3分)关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为(  )A.74B.75C.76D.08.(3分)在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是(  )A.B.C.D.9.(3分)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为(  )A.1个B.2个C.3个D.4个10.(3分)如图,在平面直角坐标系中,点A1、A2、A3…An在x轴上,B1、B2、B3…Bn在直线y=33x上,若A1(1,0),且△A1B1A2、△A2B2A3…△AnBnAn+1\n都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…Sn.则Sn可表示为(  )A.22n3B.22n﹣13C.22n﹣23D.22n﹣33二.填空题(每小题3分,共18分)11.(3分)因式分解:4ax2﹣4ax+a=  .12.(3分)若关于x、y的二元一次方程组x−3y=4m+3x+5y=5的解满足x+y≤0,则m的取值范围是  .13.(3分)一个圆锥的底面半径r=5,高h=10,则这个圆锥的侧面积是  .14.(3分)在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=|Ax0+By0+C|A2+B2,则点P(3,﹣3)到直线y=−23x+53的距离为  .15.(3分)如图,已知线段AB=4,O是AB的中点,直线l经过点O,∠1=60°,P点是直线l上一点,当△APB为直角三角形时,则BP=  .16.(3分)如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为  .\n三.解答题(17~21题每题8分,22、23题每题10分,24题12分,共72分)17.(8分)先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(x2−2xx2−4x+4−4x−2)÷x−4x2−418.(8分)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.19.(8分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别ABCDE类型新闻体育动画娱乐戏曲人数112040m4请你根据以上信息,回答下列问题:(1)统计表中m的值为  ,统计图中n的值为  ,A类对应扇形的圆心角为  度;(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.20.(8分)已知关于x的方程x2﹣2x+2k﹣1=0有实数根.\n(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且x2x1+x1x2=x1•x2,试求k的值.21.(8分)为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB,他站在距离教学楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60°,同时测得教学楼窗户D处的仰角为30°(A、B、D、E在同一直线上).然后,小明沿坡度i=1:1.5的斜坡从C走到F处,此时DF正好与地面CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若小明在F处又测得宣传牌顶部A的仰角为45°,求宣传牌的高度AB(结果精确到0.1米,2≈1.41,3≈1.73).22.(10分)如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB=1010,BC=1,求PO的长.23.(10分)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.\n(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?24.(12分)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若△AOC与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.\n2019年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣2019的绝对值是(  )A.2019B.﹣2019C.12019D.−12019【解答】解:﹣2019的绝对值是:2019.故选:A.2.(3分)下列运算正确的是(  )A.a3•a2=a6B.a7÷a3=a4C.(﹣3a)2=﹣6a2D.(a﹣1)2=a2﹣1【解答】解:A、原式=a5,不符合题意;B、原式=a4,符合题意;C、原式=9a2,不符合题意;D、原式=a2﹣2a+1,不符合题意,故选:B.3.(3分)据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学记数法可表示为(  )A.0.1031×106B.1.031×107C.1.031×108D.10.31×109【解答】解:将1031万用科学记数法可表示为1.031×107.故选:B.4.(3分)如图是由7个小正方体组合成的几何体,则其左视图为(  )\nA.B.C.D.【解答】解:从左面看易得其左视图为:故选:A.5.(3分)如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为(  )A.45°B.55°C.65°D.75°【解答】解:如图,作EF∥AB∥CD,∴∠2=∠AEF=35°,∠1=∠FEC,∵∠AEC=90°,∴∠1=90°﹣35°=55°,故选:B.6.(3分)已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为(  )\nA.3B.4.5C.5.2D.6【解答】解:∵一组数据7,2,5,x,8的平均数是5,∴5=15(7+2+5+x+8),∴x=5×5﹣7﹣2﹣5﹣8=3,∴s2=15[(7﹣5)2+(2﹣5)2+(5﹣5)2+(3﹣5)2+(8﹣5)2]=5.2,故选:C.7.(3分)关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为(  )A.74B.75C.76D.0【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=12,把x2=12代入x2﹣4x+m=0得:(12)2﹣4×12+m=0,解得:m=74,故选:A.8.(3分)在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是(  )A.B.C.D.【解答】解:∵函数y=﹣x+k与y=kx(k为常数,且k≠0),\n∴当k>0时,y=﹣x+k经过第一、二、四象限,y=kx经过第一、三象限,故选项A、B错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=kx经过第二、四象限,故选项C正确,选项D错误,故选:C.9.(3分)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为(  )A.1个B.2个C.3个D.4个【解答】解:①∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴右侧,∴b<0∵抛物线与y轴交于负半轴,∴c>0,∴abc<0,①正确;②当x=﹣1时,y>0,∴a﹣b+c>0,∵−b2a=1,∴b=﹣2a,把b=﹣2a代入a﹣b+c>0中得3a+c>0,所以②正确;③当x=1时,y<0,∴a+b+c<0,∴a+c<﹣b,∵a>0,c>0,﹣b>0,∴(a+c)2<(﹣b)2,即(a+c)2﹣b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,\n∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+mb+c,即a+b≤m(am+b),所以④正确.故选:D.10.(3分)如图,在平面直角坐标系中,点A1、A2、A3…An在x轴上,B1、B2、B3…Bn在直线y=33x上,若A1(1,0),且△A1B1A2、△A2B2A3…△AnBnAn+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…Sn.则Sn可表示为(  )A.22n3B.22n﹣13C.22n﹣23D.22n﹣33【解答】解:∵△A1B1A2、△A2B2A3…△AnBnAn+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥AnBn,B1A2∥B2A3∥B3A4∥…∥BnAn+1,△A1B1A2、△A2B2A3…△AnBnAn+1都是等边三角形,∵直线y=33x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OBnAn=30°,∴B2A2=OA2=2,B3A3=4,…,BnAn=2n﹣1,易得∠OB1A2=90°,…,∠OBnAn+1=90°,∴B1B2=3,B2B3=23,…,BnBn+1=2n3,∴S1=12×1×3=32,S2=12×2×23=23,…,Sn=12×2n﹣1×2n3=22n−33;故选:D.二.填空题(每小题3分,共18分)\n11.(3分)因式分解:4ax2﹣4ax+a= a(2x﹣1)2 .【解答】解:原式=a(4x2﹣4x+1)=a(2x﹣1)2,故答案为:a(2x﹣1)212.(3分)若关于x、y的二元一次方程组x−3y=4m+3x+5y=5的解满足x+y≤0,则m的取值范围是 m≤﹣2 .【解答】解:x−3y=4m+3①x+5y=5②,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤﹣2.故答案是:m≤﹣2.13.(3分)一个圆锥的底面半径r=5,高h=10,则这个圆锥的侧面积是 255π .【解答】解:∵圆锥的底面半径r=5,高h=10,∴圆锥的母线长为52+102=55,∴圆锥的侧面积为π×55×5=255π,故答案为:255π.14.(3分)在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=|Ax0+By0+C|A2+B2,则点P(3,﹣3)到直线y=−23x+53的距离为 81313 .【解答】解:∵y=−23x+53∴2x+3y﹣5=0∴点P(3,﹣3)到直线y=−23x+53的距离为:|2×3+3×(−3)−5|22+32=81313,故答案为:81313.15.(3分)如图,已知线段AB=4,O是AB的中点,直线l经过点O,∠1=60°,P点是直线l上一点,当△APB为直角三角形时,则BP= 2或23或27 .\n【解答】解:∵AO=OB=2,∴当BP=2时,∠APB=90°,当∠PAB=90°时,∵∠AOP=60°,∴AP=OA•tan∠AOP=23,∴BP=AB2+AP2=27,当∠PBA=90°时,∵∠AOP=60°,∴BP=OB•tan∠1=23,故答案为:2或23或27.16.(3分)如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为 16 .【解答】解:连接OC并延长,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交\nx轴于A、B,此时AB的长度最大,∵C(3,4),∴OC=32+42=5,∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OA=OB=8,∵AB是直径,∴∠APB=90°,∴AB长度的最大值为16,故答案为16.三.解答题(17~21题每题8分,22、23题每题10分,24题12分,共72分)17.(8分)先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(x2−2xx2−4x+4−4x−2)÷x−4x2−4【解答】解:原式=[x(x−2)(x−2)2−4x−2]÷x−4x2−4=[xx−2−4x−2])÷x−4x2−4=x−4x−2•(x−2)(x+2)x−4=x+2∵x﹣2≠0,x﹣4≠0,∴x≠2且x≠4,∴当x=﹣1时,原式=﹣1+2=1.18.(8分)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.\n【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=74,∴DE=8−74=254,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=62+82=10,∴OD=12BD=5,在Rt△DOE中,根据勾股定理,有DE2﹣OD2=OE2,∴OE=(254)2−52=154,∴EF=2OE=152.\n19.(8分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别ABCDE类型新闻体育动画娱乐戏曲人数112040m4请你根据以上信息,回答下列问题:(1)统计表中m的值为 25 ,统计图中n的值为 25 ,A类对应扇形的圆心角为 39.6 度;(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.【解答】解:(1)∵样本容量为20÷20%=100,∴m=100﹣(11+20+40+4)=25,n%=25100×100%=25%,A类对应扇形的圆心角为360°×11100=39.6°,故答案为:25、25、39.6.(2)1500×20100=300(人)答:该校最喜爱体育节目的人数约有300人;(3)画树状图如下:共有12种情况,所选2名同学中有男生的有6种结果,\n所以所选2名同学中有男生的概率为12.20.(8分)已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且x2x1+x1x2=x1•x2,试求k的值.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2=2,x1•x2=2k﹣1又∵x2x1+x1x2=x1•x2,∴x12+x22x1⋅x2=x1⋅x2∴(x1+x2)2﹣2x1x2=(x1•x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:k1=52,k2=−52.经检验,都符合原分式方程的根∵k≤1∴k=−52.21.(8分)为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB,他站在距离教学楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60°,同时测得教学楼窗户D处的仰角为30°(A、B、D、E在同一直线上).然后,小明沿坡度i=1:1.5的斜坡从C走到F处,此时DF正好与地面CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若小明在F处又测得宣传牌顶部A的仰角为45°,求宣传牌的高度AB(结果精确到0.1米,2≈1.41,3≈1.73).\n【解答】解:(1)过点F作FG⊥EC于G,依题意知FG∥DE,DF∥GE,∠FGE=90°;∴四边形DEFG是矩形;∴FG=DE;在Rt△CDE中,DE=CE•tan∠DCE;=6×tan30o=23(米);∴点F到地面的距离为23米;(2)∵斜坡CFi=1:1.5.∴Rt△CFG中,CG=1.5FG=23×1.5=33,∴FD=EG=33+6.在Rt△BCE中,BE=CE•tan∠BCE=6×tan60o=63.∴AB=AD+DE﹣BE.=33+6+23−63=6−3≈4.3(米).答:宣传牌的高度约为4.3米.22.(10分)如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;\n(2)求证:E为△PAB的内心;(3)若cos∠PAB=1010,BC=1,求PO的长.【解答】(1)证明:连结OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,OA=OB∠AOP=∠POBPO=PO,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵PA为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连结AE,∵PA为⊙O的切线,∴∠PAE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,\n∵OE=OA,∴∠OAE=∠AED,∴∠PAE=∠DAE,即EA平分∠PAD,∵PA、PD为⊙O的切线,∴PD平分∠APB∴E为△PAB的内心;(3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,∴∠PAB=∠C,∴cos∠C=cos∠PAB=1010,在Rt△ABC中,cos∠C=BCAC=1AC=1010,∴AC=10,AO=102,∵△PAO∽△ABC,∴POAC=AOBC,∴PO=AOBC⋅AC=1021⋅10=5.23.(10分)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?\n(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?【解答】解:(1)由题意可得:y=100+5(80﹣x)整理得y=﹣5x+500;(2)由题意,得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500∵a=﹣5<0∴w有最大值即当x=70时,w最大值=4500∴应降价80﹣70=10(元)答:当降价10元时,每月获得最大利润为4500元;(3)由题意,得:﹣5(x﹣70)2+4500=4220+200解之,得:x1=66,x2=74,∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.24.(12分)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若△AOC与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.\n【解答】解:(1))∵点A、B关于直线x=1对称,AB=4,∴A(﹣1,0),B(3,0),代入y=﹣x2+bx+c中,得:−9+3b+c=0−1−b+c=0,解得b=2c=3,∴抛物线的解析式为y=﹣x2+2x+3,∴C点坐标为(0,3);(2)设直线BC的解析式为y=mx+n,则有:n=33m+n=0,解得m=−1n=3,∴直线BC的解析式为y=﹣x+3,∵点E、F关于直线x=1对称,又E到对称轴的距离为1,∴EF=2,∴F点的横坐标为2,将x=2代入y=﹣x+3中,得:y=﹣2+3=1,∴F(2,1);(3)①如下图,MN=﹣4t2+4t+3,MB=3﹣2t,△AOC与△BMN相似,则MBMN=OAOC或OCOA,即:3−2t−4t2+4t+3=3或13,解得:t=32或−13或3或1(舍去32、−13、3),故:t=1;\n②∵M(2t,0),MN⊥x轴,∴Q(2t,3﹣2t),∵△BOQ为等腰三角形,∴分三种情况讨论,第一种,当OQ=BQ时,∵QM⊥OB∴OM=MB∴2t=3﹣2t∴t=34;第二种,当BO=BQ时,在Rt△BMQ中∵∠OBQ=45°,∴BQ=2BM,∴BO=2BM,即3=2(3−2t),∴t=6−324;第三种,当OQ=OB时,则点Q、C重合,此时t=0而t>0,故不符合题意综上述,当t=34秒或6−324秒时,△BOQ为等腰三角形.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/6/3010:04:39;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-20 14:11:42 页数:23
价格:¥3 大小:209.64 KB
文章作者:180****8757

推荐特供

MORE