2021年江西省中考数学试卷
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
2021年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣2的相反数是( )A.2B.﹣2C.D.﹣2.(3分)如图,几何体的主视图是( )A.B.C.D.3.(3分)计算的结果为( )A.1B.﹣1C.D.4.(3分)如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是( )A.一线城市购买新能源汽车的用户最多第47页(共47页),B.二线城市购买新能源汽车用户达37%C.三四线城市购买新能源汽车用户达到11万D.四线城市以下购买新能源汽车用户最少5.(3分)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )A.B.C.D.6.(3分)如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)第47页(共47页),7.(3分)国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记数法表示为 .8.(3分)因式分解:x2﹣4y2= .9.(3分)已知x1,x2是一元二次方程x2﹣4x+3=0的两根,则x1+x1﹣x1x2= .10.(3分)如表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是 .11.(3分)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为 .12.(3分)如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为 .三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(﹣1)2﹣(π﹣2021)0+|﹣|;(2)如图,在△ABC中,∠A=40°,∠ABC=80°,BE平分∠ABC交AC于点E,ED第47页(共47页),⊥AB于点D,求证:AD=BD.14.(6分)解不等式组:并将解集在数轴上表示出来.15.(6分)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是 事件(填“随机”或“不可能”或“必然”);(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.16.(6分)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.17.(6分)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象交于点A(1,a)在△ABC中,∠ACB=90°,CA=CB,点C坐标为(﹣2,0).(1)求k的值;第47页(共47页),(2)求AB所在直线的解析式.四、(本大题共3小题,每小题8分,共24分)18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是 元/件,乙两次购买这种商品的平均单价是 元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同 加油更合算(填“金额”或“油量”).19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.甲厂鸡腿质量频数统计表质量x(g)频数频率68≤x<7120.171≤x30.15第47页(共47页),<7474≤x<7710a77≤x<8050.25合计201分析上述数据,得到下表:统计量厂家平均数中位数众数方差甲厂7576b6.3乙厂7575776.6请你根据图表中的信息完成下列问题:(1)a= ,b= ;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊第47页(共47页),MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.22.(9分)二次函数y=x2﹣2mx的图象交x轴于原点O及点A.第47页(共47页),感知特例(1)当m=1时,如图1,抛物线L:y=x2﹣2x上的点B,O,C,A,D分别关于点A中心对称的点为B′,O′,C′,A′,D′,如表:…B(﹣1,3)O(0,0)C(1,﹣1)A( , )D(3,3)……B'(5,﹣3)O′(4,0)C'(3,1)A′(2,0)D'(1,﹣3)…①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L'.形成概念我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.第47页(共47页),探究问题(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为 ;②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是 (填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m的值.六、(本大题共12分)23.(12分)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是 ;类比迁移(2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF第47页(共47页),于点E,连接AE,发现AD,DE,AE之间的数量关系是 ;方法运用(3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.①求证:∠ABC+∠ADC=90°;②连接BD,如图4,已知AD=m,DC=n,=2,求BD的长(用含m,n的式子表示).第47页(共47页),2021年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣2的相反数是( )A.2B.﹣2C.D.﹣【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(3分)如图,几何体的主视图是( )A.B.C.D.【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,因此选项C中的图形符合题意,故选:C.3.(3分)计算的结果为( )A.1B.﹣1C.D.第47页(共47页),【解答】解:原式===1,故选:A.4.(3分)如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是( )A.一线城市购买新能源汽车的用户最多B.二线城市购买新能源汽车用户达37%C.三四线城市购买新能源汽车用户达到11万D.四线城市以下购买新能源汽车用户最少【解答】解:A、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;B、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;C、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;D、四线城市以下购买新能源汽车用户最少,故本选项正确,不符合题意;故选:C.5.(3分)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )第47页(共47页),A.B.C.D.【解答】解:观察函数图象可知:a>0,b>0,c<0,∴二次函数y=ax2﹣bx+c的图象开口向上,对称轴x=﹣<0,与y轴的交点在y轴负半轴.故选:D.6.(3分)如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A.2B.3C.4D.5【解答】解:观察图象可知,能拼接成不同轴对称图形的个数为3个.第47页(共47页),故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记数法表示为 4.51×107 .【解答】解:45100000=4.51×107,故答案为:4.51×107.8.(3分)因式分解:x2﹣4y2= (x+2y)(x﹣2y) .【解答】解:x2﹣4y2=(x+2y)(x﹣2y).9.(3分)已知x1,x2是一元二次方程x2﹣4x+3=0的两根,则x1+x1﹣x1x2= 1 .【解答】解:∵x1,x2是一元二次方程x2﹣4x+3=0的两根,∴x1+x2=4,x1x2=3.则x1+x2﹣x1x2=4﹣3=1.故答案是:1.10.(3分)如表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是 3 .【解答】解:由表可知,每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,第47页(共47页),故第四行空缺的数字是1+2=3,故答案为:3.11.(3分)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为 4a+2b .【解答】解:∵∠B=80°,四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE,又AD∥BC,∴∠DAC=∠ACB,∴∠ACE=∠DAC,∴△AFC为等腰三角形.∴AF=FC=a.设∠ECD=x,则∠ACE=2x,∴∠DAC=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得:x=20°.∴由三角形外角定理可得∠DFC=4x=80°,故△DFC为等腰三角形.∴DC=FC=a.∴AD=AF+FD=a+b,故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=2=4a+2b.故答案为:4a+2b.12.(3分)如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为 9或10或18 .第47页(共47页),【解答】解:连接DF,DB,BF.则△DBF是等边三角形.设BE交DF于J.∵六边形ABCDEF是正六边形,∴由对称性可知,DF⊥BE,∠JEF=60°,EF=ED=6,∴FJ=DJ=EF•sin60°=6×=9,∴DF=18,∴当点M与B重合,点N与F重合时,满足条件,∴△DMN的边长为18,如图,当点N在OC上,点M在OE上时,等边△DMN的边长的最大值为6≈10.39,最小值为9,∴△DMN的边长为整数时,边长为10或9,综上所述,等边△DMN的边长为9或10或18.故答案为:9或10或18.第47页(共47页),三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(﹣1)2﹣(π﹣2021)0+|﹣|;(2)如图,在△ABC中,∠A=40°,∠ABC=80°,BE平分∠ABC交AC于点E,ED⊥AB于点D,求证:AD=BD.【解答】(1)解:原式=1﹣1+=;(2)证明:∵BE平分∠ABC交AC于点E,∴∠ABE=∠ABC=×80°=40°,∵∠A=40°,∴∠A=∠ABE,∴△ABE为等腰三角形,∵ED⊥AB,∴AD=BD.14.(6分)解不等式组:并将解集在数轴上表示出来.【解答】解:解不等式2x﹣3≤1,得:x≤2,解不等式>﹣1,得:x>﹣4,则不等式组的解集为﹣4<x≤2,将不等式组的解集表示在数轴上如下:15.(6分)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D第47页(共47页),四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是 随机 事件(填“随机”或“不可能”或“必然”);(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.【解答】解:(1)“A志愿者被选中”是随机事件,故答案为:随机;(2)列表如下:ABCDA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中A,B两名志愿者被选中的有2种结果,所以A,B两名志愿者被选中的概率为=.16.(6分)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【解答】解:(1)如图1,直线l即为所求;第47页(共47页),(2)如图2中,直线a即为所求.17.(6分)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象交于点A(1,a)在△ABC中,∠ACB=90°,CA=CB,点C坐标为(﹣2,0).(1)求k的值;(2)求AB所在直线的解析式.【解答】解:(1)∵正比例函数y=x的图象经过点A(1,a),∴a=1,∴A(1,1),∵点A在反比例函数y=(x>0)的图象上,∴k=1×1=1;(2)作AD⊥x轴于D,BE⊥x轴于E,∵A(1,1),C(﹣2,0),第47页(共47页),∴AD=1,CD=3,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ACD+∠CAD=90°,∴∠BCE=∠CAD,在△BCE和△CAD中,,∴△BCE≌△CAD(AAS),∴CE=AD=1,BE=CD=3,∴B(﹣3,3),设直线AB的解析式为y=mx+n,∴,解得,∴直线AB的解析式为y=﹣+.四、(本大题共3小题,每小题8分,共24分)18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是 48 元/件,乙两次购买这种商品的平均单价是 50 元/件.第47页(共47页),(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同 金额 加油更合算(填“金额”或“油量”).【解答】(1)解:设这种商品的单价为x元/件.由题意得:,解得:x=60,经检验:x=60是原方程的根.答:这种商品的单价为60元/件.(2)解:第二次购买该商品时的单价为:60﹣20=40(元/件),第二次购买该商品时甲购买的件数为:2400÷40=60(件),第二次购买该商品时乙购买的总价为:(3000÷60)×40=2000(元),∴甲两次购买这种商品的平均单价是:2400×2÷()=48(元/件),乙两次购买这种商品的平均单价是:(3000+2000)÷(×2)=50(元/件).故答案为:48;50.(3)解:∵48<50,∴按相同金额加油更合算.故答案为:金额.19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.甲厂鸡腿质量频数统计表质量x(g)频数频率68≤x<7120.171≤x30.15第47页(共47页),<7474≤x<7710a77≤x<8050.25合计201分析上述数据,得到下表:统计量厂家平均数中位数众数方差甲厂7576b6.3乙厂7575776.6请你根据图表中的信息完成下列问题:(1)a= 0.5 ,b= 76 ;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?【解答】解:(1)2÷0.1=20(个),a=10÷20=0.5,甲厂鸡腿质量出现次数最多的是76g,因此众数是76,即b=76,第47页(共47页),故答案为:0.5,76;(2)20﹣1﹣4﹣7=8(个),补全频数分布直方图如下:(3)两个厂的平均数相同,都是75g,而甲厂的中位数、众数都是76g,接近平均数且方差较小,数据的比较稳定,因此选择甲厂;(4)20000×0.15=3000(只),答:从甲厂采购了20000只鸡腿中,可以加工成优等品的大约有3000只.20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)第47页(共47页),【解答】解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK⊥DE,垂足为K,∵MP=25.3cm,BA=HP=8.5cm,∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),在Rt△BMH中,cos∠BMH===0.4,∴∠BMH=66.4°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣66.4°=113.6°;(2)∴∠ABC=180°﹣∠BMH=180°﹣66.4°=113.6°.∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,∵MN=28cm,∴cos45°==,∴MI≈19.74cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣19.74﹣25.3=4.96≈5.0(cm),∴此时枪身端点A与小红额头的距离是在规定范围内.第47页(共47页),五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,第47页(共47页),∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∠D=90°﹣∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∴CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD=S△ACD+S扇形COD=××2×2+=+π.22.(9分)二次函数y=x2﹣2mx的图象交x轴于原点O及点A.感知特例第47页(共47页),(1)当m=1时,如图1,抛物线L:y=x2﹣2x上的点B,O,C,A,D分别关于点A中心对称的点为B′,O′,C′,A′,D′,如表:…B(﹣1,3)O(0,0)C(1,﹣1)A( 2 , 0 )D(3,3)……B'(5,﹣3)O′(4,0)C'(3,1)A′(2,0)D'(1,﹣3)…①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L'.形成概念我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.第47页(共47页),探究问题(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为 ﹣3≤x≤﹣1 ;②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是 y=x2 (填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m的值.【解答】解:(1)①∵B(﹣1,3)、B'(5,﹣3)关于点A中心对称,∴点A为BB′的中点,设点A(m,n),∴m==2,n==0,故答案为:(2,0);②所画图象如图1所示,第47页(共47页),(2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,对称轴为直线x=﹣1,开口向上,当x≤﹣1时,L的函数值随着x的增大而减小,抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,对称轴为直线x=﹣3,开口向下,当x≥﹣3时,L′的函数值随着x的增大而减小,∴当﹣3≤x≤﹣1时,抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,故答案为:﹣3≤x≤﹣1;②设这条抛物线解析式为y=ax2,∵二次函数y=x2﹣2mx的“孔像抛物线”L'为:y=﹣(x﹣3m)2+m2,∴关于x的一元二次方程ax2=﹣(x﹣3m)2+m2,有两个相等的实数根,整理得:(a+1)x2﹣6mx+8m2=0,∴△=(﹣6m)2﹣4•(a+1)•8m2=0,∴(4﹣32a)m2=0,∵m≠0,∴4﹣32a=0,∴a=,∴这条抛物线的解析式为y=x2,故答案为:y=x2;③抛物线L:y=x2﹣2mx=(x﹣m)2﹣m2,顶点坐标为M(m,﹣m2),第47页(共47页),其“孔像抛物线”L'为:y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),抛物线L与其“孔像抛物线”L'有一个公共点A(2m,0),∴二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点时,有三种情况:①直线y=m经过M(m,﹣m2),∴m=﹣m2,解得:m=﹣1或m=0(舍去),②直线y=m经过N(3m,m2),∴m=m2,解得:m=1或m=0(舍去),③直线y=m经过A(2m,0),∴m=0,综上所述,m=±1或0.六、(本大题共12分)23.(12分)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是 ∠DCA′ ;类比迁移(2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是 AD2+DE2=AE2 ;方法运用(3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.第47页(共47页),①求证:∠ABC+∠ADC=90°;②连接BD,如图4,已知AD=m,DC=n,=2,求BD的长(用含m,n的式子表示).【解答】(1)解:如图1中,由图形的拼剪可知,∠A=∠DCA′,故答案为:∠DCA′.(2)解:如图2中,∵∠ADC+∠ABC=90°,∠CDE=∠ABC,∴∠ADE=∠ADC+∠CDE=90°,∴AD2+DE2=AE2.故答案为:AD2+DE2=AE2.(3)①证明:如图3中,连接OC,作△ADC的外接圆⊙O.∵点O是△ACD两边垂直平分线的交点∴点O是△ADC的外心,第47页(共47页),∴∠AOC=2∠ADC,∵OA=OC,∴∠OAC=∠OCA,∵∠AOC+∠OAC+∠OCA=180°,∠OAC=∠ABC,∴2∠ADC+2∠ABC=180°,∴∠ADC+∠ABC=90°.②解:如图4中,在射线DC的下方作∠CDT=∠ABC,过点C作CT⊥DT于T.∵∠CTD=∠CAB=90°,∠CDT=∠ABC,∴△CTD∽△CAB,∴∠DCT=∠ACB,=,∴=,∠DCB=∠TCA∴△DCB∽△TCA,∴=,∵=2,∴AC:BC:BC=CT:DT:CD=1:2:,∴BD=AT,∵∠ADT=∠ADC+∠CDT=∠ADC+∠ABC=90°,DT=n,AD=m,∴AT===,∴BD=.第47页(共47页),鄂州市2021年初中毕业生学业考试数学试题学校:_______________考生姓名:_______________准考证号:注意事项:1.本试题卷共6页,满分120分,考试时间120分钟。2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。答在试题卷上无效。4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。答在试题卷上无效。5.考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。6.考生不准使用计算器。一、选择题(本大题共10小题,每小题3分,共计30分)第47页(共47页),1.实数6的相反数等于A.B.6C.D.2.下列运算正确的是A.B.C.D.3.“国士无双”是人民对“杂交水稻之父”袁隆平院士的赞誉.下列四个汉字中是轴对称图形的是A.B.C.D.4.下列四个几何体中,主视图是三角形的是A.B.C.D.5.已知锐角,如图,按下列步骤作图:①在边取一点,以为圆心,长为半径画,交于点,连接.②以为圆心,长为半径画,交于点,连接.则的度数为A.B.C.D.6.已知为实数﹐规定运算:,,,,……,.按上述方法计算:当时,的值等于A.B.C.D.7.数形结合是解决数学问题常用的思想方法.如图,直线与直线相交于点.根据图象可知,关于的不等式的解集是第47页(共47页),A.B.C.D.8.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心为圆心的圆,如图2.已知圆心在水面上方,且被水面截得的弦长为6米,半径长为4米.若点为运行轨道的最低点,则点到弦所在直线的距离是图1图2A.1米B.米C.2米D.米9.二次函数的图象的一部分如图所示.已知图象经过点,其对称轴为直线.下列结论:①;②;③;④若抛物线经过点,则关于的一元二次方程的两根分别为,5.上述结论中正确结论的个数为A.1个B.2个C.3个D.4个10.如图,中,,,.点为第47页(共47页),内一点,且满足.当的长度最小时,的面积是A.3B.C.D.二、填空题(本大题共6小题,每小题3分,共计18分)11.计算:_____________.12.“最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区参加美化社区活动.6名志愿者参加劳动的时间(单位:小时)分别为:3,2,2,3,1,2.这组数据的中位数是_____________.13.已知实数、满足,若关于的一元二次方程的两个实数根分别为、,则_____________.14.如图,在平面直角坐标系中,点的坐标为,点的坐标为,将点绕点顺时针旋转得到点,则点的坐标为_____________.15.如图,点是反比例函数的图象上一点,过点作轴于点,交反比例函数的图象于点,点是轴正半轴上一点.若的面积为2,则的值为_____________.第47页(共47页),16.如图,四边形中,,,于点.若,,则线段的长为_____________.三、解答题(本大题共8小题,17~21题每题8分,22~23题每题10分,24题12分,共计72分)17.(本题满分8分)先化简,再求值:,其中.18.(本题满分8分)为了引导青少年学党史、颂党恩、跟党走,某中学举行了“南献礼建党百年”党史知识竞赛活动.胡老师从全校学生的答卷中随机地抽取了部分学生的答卷进行了统计分析(卷面满分100分,且得分均为不小于60的整数)﹐并将竞赛成绩划分为四个等级:基本合格().合格()、良好()、优秀(),制作了如下统计图(部分信息未给出):所抽取成绩的条形统计图所抽取成绩的扇形统计图根据图中提供的信息解决下列问题:(1)(3分)胡老师共抽取了____________名学生的成绩进行统计分析,扇形统计图中“基本合格”等级对应的扇形圆心角度数为____________﹐请补全条形统计图.(2)(5分)现从“优秀”等级的甲、乙、丙、丁四名学生中任选两人参加全市党史知识竞赛活动,请用画树形图的方法求甲学生被选到的概率.第47页(共47页),19.(本题满分8分)如图,在中,点、分别在边、上,且.(1)(4分)探究四边形的形状,并说明理由;(2)(4分)连接,分别交、于点、,连接交于点.若,,求的长.20.(本题满分8分)在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由地出发,途经地去往地,如图.当他由地出发时,发现他的北偏东方向有一信号发射塔.他由地沿正东方向骑行km到达地,此时发现信号塔在他的北偏东方向,然后他由地沿北偏东方向骑行12km到达地.(1)(4分)求地与信号发射塔之问的距离;(2)(4分)求地与信号发射塔之问的距离.(计算结果保留根号)21.(本题满分8分)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本(元)与种植面积(亩)之间满足一次函数关系,且当时,;当时,.(1)(3分)求与之间的函数关系式(不求自变量的取值范围);(2)(5分)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)22.(本题满分10分)如图,在中,,为边上一点,以为圆心,长为半径的第47页(共47页),与边相切于点,交于点.(1)(4分)求证:;(2)(6分)连接,若,,求线段的长.23.(本题满分10分)数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.猜想发现由;;;;;猜想:如果,,那么存在(当且仅当时等号成立).猜想证明∵∴①当且仅当,即时,,∴;②当,即时,,∴.综合上述可得:若,,则成立(当日仅当时等号成立).猜想运用(3分)对于函数,当取何值时,函数的值最小?最小值是多少?变式探究(3分)对于函数,当取何值时,函数的值最小?最小值是多少?拓展应用(4分)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为().问:第47页(共47页),每间隔离房的长、宽各为多少时,可使每间隔离房的面积最大?最大面积是多少?24.(本题满分12分)如图,直线与轴交于点,与轴交于点,点为线段的中点,点是线段上一动点(不与点、重合).(1)(3分)请直接写出点、点、点的坐标;(2)(3分)连接,在第一象限内将沿翻折得到,点的对应点为点.若,求线段的长;(3)在(2)的条件下,设抛物线的顶点为点.①(3分)若点在内部(不包括边),求的取值范围;②(3分)在平面直角坐标系内是否存在点,使最大?若存在,请直接写出点的坐标;若不存在,请说明理由.备用图1备用图2鄂州市2021年初中毕业生学业考试数学试卷参考答案及评分标准评卷说明:1.本卷满分1:20分。第47页(共47页),2.解答题按步骤给分。3.解答题仅提供一种解题方法,考生解题方法与参考答案不同的,只要合理、正确均给满分。一、选择题(每小题3分,共30分)题号12345678910答案AABCBDCBCD二、填空题(每小题3分,共18分)11.312.213.14.15.816.三、解答题(17~21题每题8分,22~23题每题10分,24题12分,共计72分)17.解:原式当时,原式18.解:(1)40,,(补全条形图略)(2).19.解:(1)四边形为平行四边形.理由如下:∵四边形为平行四边形∴∵∴∵四边形为平行四边形∴第47页(共47页),∴∴∵∴四边形为平行四边形(2)设,∵∴,∵四边形为平行四边形∴,,∵∴∴∵∴20.解:(1)依题意知:,,过点作于点,∵,∴∵,∴∵∴∴(2)∵,∴过点作于∵,第47页(共47页),∴∵∴,∵∴∴21.解:(1)设与之间的函数关系式,依题意得:解得:∴与之间的函数关系式为.(2)设老张明年种植该作物的总利润为元,依题意得:∵∴当时,随的增大而增大由题意知:当时,最大,最大值为268800元即种植面积为210亩时总利润最大,最大利润268800元22.(1)证明:∵∴又∵经过半径的外端点第47页(共47页),∴切于点∴(2)解:连接,∵为的直径∴∴又∵∴∴∵∴∴又∵∴即∵∴,又∵,∴∴设,则∴∴(舍去),即线段的长为.23.解:猜想运用:∵∴∴第47页(共47页),∴当时,此时只取即时,函数的最小值为2.变式探究:∵∴,∴∴当时,此时∴,(舍去)即时,函数的最小值为5.拓展应用:设每间隔离房与墙平行的边为米,与墙垂直的边为米,依题意得:即∵,∴即整理得:即∴当时此时,即每间隔离房长为米,宽为米时,的最大值为.第47页(共47页),24.解:(1),,(2)过点作于∵∴∴∵点∴,∴∵点∴∴即的长为1.(3)①∴其顶点的坐标为第47页(共47页),∴点是直线上一点∵,∴当时,又∵点在直线上∴当点在内部(不含边)时,的取值范围是.②存在点使最大.其坐标为.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/6/238:57:55;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第47页(共47页)
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)