2021年湖北省宜昌市中考数学试卷
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
2021年湖北省宜昌市中考数学试卷一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号,每小题3分,计33分)1.(3分)﹣2021的倒数是( )A.2021B.﹣2021C.D.﹣2.(3分)下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )A.B.C.D.3.(3分)2021年5月15日07时18分,“天问一号”火星探测器成功登陆火星表面,开启了中国人自主探测火星之旅.地球与火星的最近距离约为5460万公里.“5460万”用科学记数法表示为( )A.5.46×102B.5.46×103C.5.46×106D.5.46×1074.(3分)如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DEF=45°,AB∥DE,则∠AFD的度数是( )A.15°B.30°C.45°D.60°5.(3分)下列运算正确的是( )第43页(共43页),A.x3+x3=x6B.2x3﹣x3=x3C.(x3)2=x5D.x3•x3=x96.(3分)在六张卡片上分别写有6,﹣,3.1415,π,0,六个数,从中随机抽取一张,卡片上的数为无理数的概率是( )A.B.C.D.7.(3分)某气球内充满了一定质量m的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=,能够反映两个变量p和V函数关系的图象是( )A.B.C.D.8.(3分)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x人,物价为y钱,下列方程组正确的是( )A.B.C.D.9.(3分)如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为( )A.B.C.D.10.(3分)如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=25°,则∠BDC=( )第43页(共43页),A.85°B.75°C.70°D.65°11.(3分)从前,古希腊一位庄园主把一块边长为a米(a>6)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( )A.没有变化B.变大了C.变小了D.无法确定二、填空题(将答案写在答题卡上指定的位置.每小题3分,计12分.)12.(3分)用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为﹣6℃,攀登2km后,气温下降 ℃.13.(3分)如图,在平面直角坐标系中,将点A(﹣1,2)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是 .14.(3分)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是 .(填“黑球”或“白球”)第43页(共43页),15.(3分)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为 平方厘米.(圆周率用π表示)三、解答题(将解答过程写在答题卡上指定的位置,本大题共有9小题,计75分.)16.(6分)先化简,再求值:÷﹣,从1,2,3这三个数中选择一个你认为适合的x代入求值.17.(6分)解不等式组.18.(7分)如图,在△ABC中,∠B=40°,∠C=50°.(1)通过观察尺规作图的痕迹,可以发现直线DF是线段AB的 ,射线AE是∠DAC的 ;(2)在(1)所作的图中,求∠DAE的度数.19.(7分)国家规定“中小学生每天在校体育活动时间不低于1h”.为此,某市就“每天在校体育活动时间”第43页(共43页),的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5hB组:0.5h≤t<1hC组:1h≤t<1.5hD组:t≥1.5h请根据上述信息解答下列问题:(1)本次调查的人数是 人;(2)请根据题中的信息补全频数分布直方图;(3)D组对应扇形的圆心角为 °;(4)本次调查数据的中位数落在 组内;(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.20.(8分)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)文文购买3kg苹果需付款 元;购买5kg苹果需付款 元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?21.(8分)如图,在菱形ABCD中,O是对角线BD上一点(BO>DO),OE⊥AB,垂足为E,以OE为半径的⊙O分别交DC于点H,交EO的延长线于点F,EF与DC交于点G.(1)求证:BC是⊙O的切线;第43页(共43页),(2)若G是OF的中点,OG=2,DG=1.①求的长;②求AD的长.22.(10分)随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌更节水的灌溉方式,喷灌和滴灌时每亩用水量分别是漫灌时的30%和20%.去年,新丰收公司用各100亩的三块试验田分别采用喷灌、滴灌和漫灌的灌溉方式,共用水15000吨.(1)请问用漫灌方式每亩用水多少吨?去年每块试验田各用水多少吨?(2)今年该公司加大对农业灌溉的投入,喷灌和滴灌试验田的面积都增加了m%,漫灌试验田的面积减少了2m%.同时,该公司通过维修灌溉输水管道,使得三种灌溉方式下的每亩用水量都进一步减少了m%.经测算,今年的灌溉用水量比去年减少m%,求m的值.(3)节水不仅为了环保,也与经济收益有关系.今年,该公司全部试验田在灌溉输水管道维修方面每亩投入30元,在新增的喷灌、滴灌试验田添加设备所投入经费为每亩100元,在(2)的情况下,若每吨水费为2.5元,请判断,相比去年因用水量减少所节省的水费是否大于今年的以上两项投入之和?23.(11分)如图,在矩形ABCD中,E是边AB上一点,BE=BC,EF⊥CD,垂足为F.将四边形CBEF绕点C顺时针旋转α(0°<α<90°),得到四边形CB'E'F′,B′E′所在的直线分别交直线BC于点G,交直线AD于点P,交CD于点K.E′F′所在的直线分别交直线BC于点H,交直线AD于点Q,连接B′F′交CD于点O.(1)如图1,求证:四边形BEFC是正方形;(2)如图2,当点Q和点D重合时.①求证:GC=DC;②若OK=1,CO=2,求线段GP的长;第43页(共43页),(3)如图3,若BM∥F′B′交GP于点M,tan∠G=,求的值.24.(12分)在平面直角坐标系中,抛物线y1=﹣(x+4)(x﹣n)与x轴交于点A和点B(n,0)(n≥﹣4),顶点坐标记为(h1,k1).抛物线y2=﹣(x+2n)2﹣n2+2n+9的顶点坐标记为(h2,k2).(1)写出A点坐标;(2)求k1,k2的值(用含n的代数式表示)(3)当﹣4≤n≤4时,探究k1与k2的大小关系;(4)经过点M(2n+9,﹣5n2)和点N(2n,9﹣5n2)的直线与抛物线y1=﹣(x+4)(x﹣n),y2=﹣(x+2n)2﹣n2+2n+9的公共点恰好为3个不同点时,求n的值.第43页(共43页),2021年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号,每小题3分,计33分)1.(3分)﹣2021的倒数是( )A.2021B.﹣2021C.D.﹣【解答】解:﹣2021的倒数是.故选:D.2.(3分)下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )A.B.C.D.【解答】解:A.不是中心对称图形,故本选项不合题意;B.不是中心对称图形,故本选项不合题意;C.是中心对称图形,故本选项符合题意;D.不是中心对称图形,故本选项不合题意.故选:C.3.(3分)2021年5月15日07时18分,“天问一号”火星探测器成功登陆火星表面,开启了中国人自主探测火星之旅.地球与火星的最近距离约为5460万公里.“5460万”用科学记数法表示为( )第43页(共43页),A.5.46×102B.5.46×103C.5.46×106D.5.46×107【解答】解:5460万=54600000=5.46×107,故选:D.4.(3分)如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DEF=45°,AB∥DE,则∠AFD的度数是( )A.15°B.30°C.45°D.60°【解答】解:如图,∵∠ACB=90°,∠ABC=60°,∴∠A=180°﹣∠ACB﹣∠ABC=180°﹣90°﹣60°=30°,∵∠EFD=90°,∠DEF=45°,∴∠D=180°﹣∠EFD﹣∠DEF=180°﹣90°﹣45°=45°,∵AB∥DE,∴∠1=∠D=45°,∴∠AFD=∠1﹣∠A=45°﹣30°=15°,故选:A.5.(3分)下列运算正确的是( )A.x3+x3=x6B.2x3﹣x3=x3C.(x3)2=x5D.x3•x3=x9【解答】解:A.x3+x3=2x3,故本选项不合题意;第43页(共43页),B.2x3﹣x3=x3,故本选项符合题意;C.(x3)2=x6,故本选项不合题意;D.x3•x3=x6,故本选项不合题意;故选:B.6.(3分)在六张卡片上分别写有6,﹣,3.1415,π,0,六个数,从中随机抽取一张,卡片上的数为无理数的概率是( )A.B.C.D.【解答】解:∵六张卡片上分别写有6,﹣,3.1415,π,0,六个数,无理数的是π,,∴从中任意抽取一张卡片上的数为无理数的概率是:=.故选:C.7.(3分)某气球内充满了一定质量m的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=,能够反映两个变量p和V函数关系的图象是( )A.B.C.D.【解答】解:∵气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=(V,p都大于零),∴能够反映两个变量p和V函数关系的图象是:.故选:B.8.(3分)我国古代数学经典著作《九章算术》中有这样一题,原文是:“第43页(共43页),今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x人,物价为y钱,下列方程组正确的是( )A.B.C.D.【解答】解:设有x人,买此物的钱数为y,由题意得:,故选:A.9.(3分)如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为( )A.B.C.D.【解答】解:法一、如图,在Rt△ABD中,∠ADB=90°,AD=BD=3,∴AB===3,∴cos∠ABC===.故选:B.法二、在Rt△ABD中,∠ADB=90°,AD=BD=3,∴∠ABD=∠BAD=45°,∴cos∠ABC=cos45°=.故选:B.第43页(共43页),10.(3分)如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=25°,则∠BDC=( )A.85°B.75°C.70°D.65°【解答】解:连接OC,如图,∵∠ABC=25°,∴∠AOC=2∠ABC=2×25°=50°,∴∠BOC=180°﹣∠AOC=180°﹣50°=30°,∴.故选:D.11.(3分)从前,古希腊一位庄园主把一块边长为a米(a>6)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( )A.没有变化B.变大了C.变小了D.无法确定【解答】解:矩形的面积为(a+6)(a﹣6)=a2﹣36,∴矩形的面积比正方形的面积a2小了36平方米,故选:C.二、填空题(将答案写在答题卡上指定的位置.每小题3分,计12分.)12.(3分)用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为﹣6℃,攀登2km后,气温下降 12 ℃.【解答】解:由题意可得,2÷1×(﹣6)第43页(共43页),=2×(﹣6)=﹣12(℃),即气温下降12℃,故答案为:12.13.(3分)如图,在平面直角坐标系中,将点A(﹣1,2)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是 (1,﹣2) .【解答】解:∵将点A(﹣1,2)向右平移2个单位长度得到点B,∴B(1,2),则点B关于x轴的对称点C的坐标是(1,﹣2).故答案为:(1,﹣2).14.(3分)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是 白球 .(填“黑球”或“白球”)【解答】解:由图可知,摸出黑球的概率约为0.2,∴摸出白球的概率约为0.8,∴白球的个数比较多,第43页(共43页),故答案为白球.15.(3分)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为 (2π﹣2) 平方厘米.(圆周率用π表示)【解答】解:过A作AD⊥BC于D,∵AB=AC=BC=2厘米,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1厘米,AD=BD=厘米,∴△ABC的面积为BC•AD=(厘米2),S扇形BAC==π(厘米2),∴莱洛三角形的面积S=3×π﹣2×=(2π﹣2)厘米2,故答案为:(2π﹣2).三、解答题(将解答过程写在答题卡上指定的位置,本大题共有9小题,计75分.)16.(6分)先化简,再求值:÷﹣,从1,2,3这三个数中选择一个你认为适合的x代入求值.【解答】解:÷﹣=•(x+1)﹣=第43页(共43页),=,∵(x+1)(x﹣1)≠0,∴x≠1,﹣1,∴x=2或3,当x=2时,原式==1.17.(6分)解不等式组.【解答】解:,解不等式①得:x≤1,解不等式②得:x≤5,∴不等式组解集为x≤1.18.(7分)如图,在△ABC中,∠B=40°,∠C=50°.(1)通过观察尺规作图的痕迹,可以发现直线DF是线段AB的 垂直平分线 ,射线AE是∠DAC的 角平分线 ;(2)在(1)所作的图中,求∠DAE的度数.【解答】解:(1)通过观察尺规作图的痕迹,可以发现直线DF是线段AB的垂直平分线,射线AE是∠DAC的角平分线.故答案为:垂直平分线,角平分线.(2)∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=B=40°,∵∠B=40°,∠C=50°,∴∠BAC=90°,第43页(共43页),∴∠CAD=50°,∵AE平分∠CAD,∴∠DAE=∠CAD=25°.19.(7分)国家规定“中小学生每天在校体育活动时间不低于1h”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5hB组:0.5h≤t<1hC组:1h≤t<1.5hD组:t≥1.5h请根据上述信息解答下列问题:(1)本次调查的人数是 400 人;(2)请根据题中的信息补全频数分布直方图;(3)D组对应扇形的圆心角为 36 °;(4)本次调查数据的中位数落在 C 组内;(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.【解答】解:(1)∵A组有40人,占10%,∴总人数为(人),故答案为400;(2)C组的人数为400﹣40﹣80﹣40=240(人),统计图如下:第43页(共43页),(3)D组所占的百分比为,∴D组所对的圆心角为360°×10%=36°,故答案为36;(4)中位数为第200个数据和第201个数据的平均数,都在C组,∴中位数在C组,故答案为C;(5)优秀人数所占的百分比为,∴全市优秀人数大约为80000×70%=56000(人).20.(8分)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)文文购买3kg苹果需付款 30 元;购买5kg苹果需付款 46 元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?【解答】解:(1)由题意可知:文文购买3kg苹果,不优惠,∴文文购买3kg苹果需付款:3×10=30(元),购买5kg苹果,4kg不优惠,1kg优惠,∴购买5kg苹果需付款:4×10+1×10×0.6=46(元),故答案为:30,46;(2)由题意得:当0<x≤4时,y=4x,第43页(共43页),当x>4时,y=4×10+(x﹣4)×10×0.6=6x+16,∴付款金额y关于购买苹果的重量x的函数解析式为:y=;(3)文文在甲超市购买10kg苹果需付费:6×10+16=76(元),文文在乙超市购买10kg苹果需付费:10×10×0.8=80(元),∴文文应该在甲超市购买更划算.21.(8分)如图,在菱形ABCD中,O是对角线BD上一点(BO>DO),OE⊥AB,垂足为E,以OE为半径的⊙O分别交DC于点H,交EO的延长线于点F,EF与DC交于点G.(1)求证:BC是⊙O的切线;(2)若G是OF的中点,OG=2,DG=1.①求的长;②求AD的长.【解答】解:(1)证明:如图1,过点O作OM⊥BC于点M,∵BD是菱形ABCD的对角线,∴∠ABD=∠CBD,∵OM⊥BC,OE⊥AB,∴OE=OM,∴BC是⊙O的切线.第43页(共43页),(2)①如图2,∵G是OF的中点,OF=OH,∴OG=OH,∵AB∥CD,OE⊥AB,∴OF⊥CD,∴∠OGH=90°,∴sin∠GHO=,∴∠GHO=30°,∴∠GOH=60°,∴∠HOE=120°,∵OG=2,∴OH=4,∴由弧长公式得到的长:=.②如图3,过A作AN⊥BD于点N,∵DG=1,OG=2,OE=OH=4,∴OD=,OB=2,DN=,∴△DOG∽△DAN,∴,∴,∴AD=.第43页(共43页),22.(10分)随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌更节水的灌溉方式,喷灌和滴灌时每亩用水量分别是漫灌时的30%和20%.去年,新丰收公司用各100亩的三块试验田分别采用喷灌、滴灌和漫灌的灌溉方式,共用水15000吨.(1)请问用漫灌方式每亩用水多少吨?去年每块试验田各用水多少吨?(2)今年该公司加大对农业灌溉的投入,喷灌和滴灌试验田的面积都增加了m%,漫灌试验田的面积减少了2m%.同时,该公司通过维修灌溉输水管道,使得三种灌溉方式下的每亩用水量都进一步减少了m%.经测算,今年的灌溉用水量比去年减少m%,求m的值.(3)节水不仅为了环保,也与经济收益有关系.今年,该公司全部试验田在灌溉输水管道维修方面每亩投入30元,在新增的喷灌、滴灌试验田添加设备所投入经费为每亩100元,在(2)的情况下,若每吨水费为2.5元,请判断,相比去年因用水量减少所节省的水费是否大于今年的以上两项投入之和?【解答】解:(1)设漫灌方式每亩用水x吨,则100x+100×30%x+100×20%x=15000,解得x=100,∴漫灌用水:100×100=10000吨,喷灌用水:30%×10000=3000吨,滴灌用水:20%×10000=2000吨,∴漫灌方式每亩用水100吨,漫灌试验田用水10000吨,喷灌试验田用水3000吨,滴灌试验田用水2000吨.(2)由题意可得,100×(1﹣2m%)×100×(1﹣m%)+100×(1+m%)×30×(1﹣m%)+100×(1+m%)×20×(1﹣m%)=15000×(1﹣m%),解得m=0(舍),或m=20,∴m=20.第43页(共43页),(3)节省水费:15000×m%×2.5=13500元,维修投入:300×30=9000元,新增设备:100×2m%×100=4000元,13500>9000+4000,∴节省水费大于两项投入之和.23.(11分)如图,在矩形ABCD中,E是边AB上一点,BE=BC,EF⊥CD,垂足为F.将四边形CBEF绕点C顺时针旋转α(0°<α<90°),得到四边形CB'E'F′,B′E′所在的直线分别交直线BC于点G,交直线AD于点P,交CD于点K.E′F′所在的直线分别交直线BC于点H,交直线AD于点Q,连接B′F′交CD于点O.(1)如图1,求证:四边形BEFC是正方形;(2)如图2,当点Q和点D重合时.①求证:GC=DC;②若OK=1,CO=2,求线段GP的长;(3)如图3,若BM∥F′B′交GP于点M,tan∠G=,求的值.【解答】(1)证明:如图1中,在矩形ABCD中,∠B=∠BCD=90°,∵EF⊥AB,∴∠EFB=90°,第43页(共43页),∴四边形BEFC是矩形,∴BE=BC,∴四边形BEFC是正方形.(2)①证明:如图2中,∵∠GCK=∠DCH=90°,∴∠CDF′+∠H=90°,∠KGC+∠H=90°,∴∠KGC=∠CDF′,∵B′C=CF′,∠GB′C=∠CF′D,∴△CGB′≌△CDF′(ASA),∴CG=CD.②解:设正方形的边长为a,∵KB′∥CF′,∴△B′KO∽△F′CO,∴==,∴B′K=B′C=a,在Rt△B′KC中,B′K2+B′C2=CK2,∴a2+(a)2=32,∴a=,由=,可得B′K=KE′=a,∵KE′∥CF′∴△DKE′∽△DCF′,第43页(共43页),∴===,∴DE′=E′F′=a,∴PE′=2a,∴PK=a,∵DK=KC,∠P=∠G,∠DKP=∠GKC,∴△PKD≌△GKC(AAS),∴GK=PK,∴PG=2PK=5a,∴PG=5a=6.(3)解:如图3中,延长B′F′交CH的延长线于R.∵CF′∥GP,RB∥BM,∴△GB∽△GRB′,∠G=∠F′CR,∴tan∠G=tan∠F′CH==,设F′H=x.CF′=2x,则CH=x,∴CB′=CF′=E′F′=BC=2x,∵CB′∥HE′,∴△RB′C∽△RF′H,∴===,∴CH=RH,B′F′=RF′,∴CR=2CH=2x,∴S△CF′R=2S△CF′H,第43页(共43页),∵CB′∥HE′,∴△GB′C∽△GE′H,∴===,∴==∴GB=2(﹣1)x,∵△GBM∽△CRF′,∴=()2=[]2=,∵S△CRF′=2S△CHF′,∴=.24.(12分)在平面直角坐标系中,抛物线y1=﹣(x+4)(x﹣n)与x轴交于点A和点B(n,0)(n≥﹣4),顶点坐标记为(h1,k1).抛物线y2=﹣(x+2n)2﹣n2+2n+9的顶点坐标记为(h2,k2).(1)写出A点坐标;(2)求k1,k2的值(用含n的代数式表示)(3)当﹣4≤n≤4时,探究k1与k2的大小关系;(4)经过点M(2n+9,﹣5n2)和点N(2n,9﹣5n2)的直线与抛物线y1=﹣(x+4)(x﹣n),y2=﹣(x+2n)2﹣n2+2n+9的公共点恰好为3个不同点时,求n的值.第43页(共43页),【解答】解:(1)∵y1=﹣(x﹣4)(x﹣n),令y1=0,﹣(x﹣4)(x﹣n)=0,∴x1=﹣4,x2=n,∴A(﹣4,0);(2)y1=﹣(x﹣4)(x﹣n)=﹣x2+(n﹣4)x+4n,∴k1=n2+2n+4,∵y2=﹣(x+2n)2﹣n2+2n+9,∴k2=﹣n2+2n+9,(3)k1﹣k2=n2﹣5,①当n2﹣5>0时,可得n>2或n<﹣2,即当﹣4≤n<﹣2或2<n≤4时,k1>k2;②当n2﹣5<0时,可得﹣2<n<2,即当﹣2<n<2时,k1<k2;③当n2﹣5=0,可得n=2或n=﹣2,即当n=2或n=﹣2时,k1=k2;(4)设直线MN的解析式为:y=kx+b,则,由①﹣②得,k=﹣1,∴b=﹣5n2+2n+9,直线MN的解析式为:y=﹣x﹣5n2+2n+9.①如图:第43页(共43页),当直线MN经过抛物线y1,y2的交点时,联立抛物线y1=﹣x2+(n﹣4)x+4n与y2=﹣x2﹣4nx﹣5n2+2n+9的解析式可得:(5n﹣4)x=﹣5n2﹣2n+9①,联立直线y=﹣x﹣5n2+2n+9与抛物线y2=﹣x2﹣4nx﹣5n2+2n+9的解析式可得:x2+(4n﹣1)x=0,则x1=0,x2=1﹣4n②,当x1=0时,把x1=0代入y1得:y=4n,把x1=0,y=4n代入直线的解析式得:4n=﹣5n2+2n+9,∴5n2+2n﹣9=0,∴n=,此时直线MN与抛物线y1,y2的公共点恰好为三个不同点,当x2=1﹣4n时,把x2=1﹣4n代入①得:(5n﹣4)(1﹣4n)=﹣5n2﹣2n+9,该方程判别式△<0,所以该方程没有实数根;②如图:第43页(共43页),当直线MN与抛物线y1或者与抛物线y2只有一个公共点时,当直线MN与抛物线y1=﹣x2+(n﹣4)x+4n只有一个公共点时,联立直线y=﹣x﹣5n2+2n+9与抛物线y=﹣x2+(n﹣4)x+4n可得,﹣x2+(n﹣3)x+5n2+2n﹣9=0,此时△=0,即(n﹣3)2+4(5n2+2n﹣9)=0,∴21n2+2n﹣27=0,∴n=,由①而知直线MN与抛物线y2=﹣x2﹣4nx﹣5n2+2n+9公共点的横坐标为x1=0,x2=1﹣4n,当n=时,1﹣4n≠0,∴x1≠x2,所以此时直线MN与抛物线y1,y2的公共点恰好为三个不同点,③如图:当直线MN与抛物线y2=﹣x2﹣4nx﹣5n2+2n+9只有一个公共点,∵x1=0,x2=1﹣4n,第43页(共43页),∴n=,联立直线y=﹣x﹣5n2+2n+9与抛物线y1=﹣x2+(n﹣4)x+4n,﹣x2+(n﹣3)x+5n2+2n﹣9=0,△=(n﹣3)2+4(5n2+2n﹣9)=21n2+2n﹣27,当n=时,△<0,此时直线MN与抛物线y1,y2的公共点只有一个,∴n≠,综上所述:n1=,n2=,n3=,n4=﹣2﹣.第43页(共43页),鄂州市2021年初中毕业生学业考试数学试题学校:_______________考生姓名:_______________准考证号:注意事项:1.本试题卷共6页,满分120分,考试时间120分钟。2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。答在试题卷上无效。4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。答在试题卷上无效。5.考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。6.考生不准使用计算器。一、选择题(本大题共10小题,每小题3分,共计30分)1.实数6的相反数等于A.B.6C.D.2.下列运算正确的是A.B.C.D.3.“国士无双”是人民对“杂交水稻之父”袁隆平院士的赞誉.下列四个汉字中是轴对称图形的是A.B.C.D.4.下列四个几何体中,主视图是三角形的是A.B.C.D.5.已知锐角,如图,按下列步骤作图:①在边取一点,以为圆心,长为半径画,交于点,连接.②以为圆心,长为半径画,交于点,连接.则的度数为第43页(共43页),A.B.C.D.6.已知为实数﹐规定运算:,,,,……,.按上述方法计算:当时,的值等于A.B.C.D.7.数形结合是解决数学问题常用的思想方法.如图,直线与直线相交于点.根据图象可知,关于的不等式的解集是A.B.C.D.8.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心为圆心的圆,如图2.已知圆心在水面上方,且被水面截得的弦长为6米,半径长为4米.若点为运行轨道的最低点,则点到弦所在直线的距离是图1图2A.1米B.米C.2米D.米第43页(共43页),9.二次函数的图象的一部分如图所示.已知图象经过点,其对称轴为直线.下列结论:①;②;③;④若抛物线经过点,则关于的一元二次方程的两根分别为,5.上述结论中正确结论的个数为A.1个B.2个C.3个D.4个10.如图,中,,,.点为内一点,且满足.当的长度最小时,的面积是A.3B.C.D.二、填空题(本大题共6小题,每小题3分,共计18分)11.计算:_____________.12.“最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区参加美化社区活动.6名志愿者参加劳动的时间(单位:小时)分别为:3,2,2,3,1,2.这组数据的中位数是_____________.13.已知实数、满足,若关于的一元二次方程的两个实数根分别为、,则_____________.第43页(共43页),14.如图,在平面直角坐标系中,点的坐标为,点的坐标为,将点绕点顺时针旋转得到点,则点的坐标为_____________.15.如图,点是反比例函数的图象上一点,过点作轴于点,交反比例函数的图象于点,点是轴正半轴上一点.若的面积为2,则的值为_____________.16.如图,四边形中,,,于点.若,,则线段的长为_____________.三、解答题(本大题共8小题,17~21题每题8分,22~23题每题10分,24题12分,共计72分)17.(本题满分8分)先化简,再求值:,其中.18.(本题满分8分)为了引导青少年学党史、颂党恩、跟党走,某中学举行了“南献礼建党百年”党史知识竞赛活动.胡老师从全校学生的答卷中随机地抽取了部分学生的答卷进行了统计分析(卷面满分100分,且得分均为不小于60的整数)﹐并将竞赛成绩划分为四个等级:基本合格().合格()、良好()、优秀(第43页(共43页),),制作了如下统计图(部分信息未给出):所抽取成绩的条形统计图所抽取成绩的扇形统计图根据图中提供的信息解决下列问题:(1)(3分)胡老师共抽取了____________名学生的成绩进行统计分析,扇形统计图中“基本合格”等级对应的扇形圆心角度数为____________﹐请补全条形统计图.(2)(5分)现从“优秀”等级的甲、乙、丙、丁四名学生中任选两人参加全市党史知识竞赛活动,请用画树形图的方法求甲学生被选到的概率.19.(本题满分8分)如图,在中,点、分别在边、上,且.(1)(4分)探究四边形的形状,并说明理由;(2)(4分)连接,分别交、于点、,连接交于点.若,,求的长.20.(本题满分8分)在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由地出发,途经地去往地,如图.当他由地出发时,发现他的北偏东方向有一信号发射塔.他由地沿正东方向骑行km到达地,此时发现信号塔在他的北偏东方向,然后他由地沿北偏东方向骑行12km到达地.(1)(4分)求地与信号发射塔之问的距离;(2)(4分)求地与信号发射塔之问的距离.(计算结果保留根号)21.(本题满分8分)第43页(共43页),为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本(元)与种植面积(亩)之间满足一次函数关系,且当时,;当时,.(1)(3分)求与之间的函数关系式(不求自变量的取值范围);(2)(5分)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)22.(本题满分10分)如图,在中,,为边上一点,以为圆心,长为半径的与边相切于点,交于点.(1)(4分)求证:;(2)(6分)连接,若,,求线段的长.23.(本题满分10分)数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.猜想发现由;;;;;猜想:如果,,那么存在(当且仅当时等号成立).猜想证明∵∴①当且仅当,即时,,∴;第43页(共43页),②当,即时,,∴.综合上述可得:若,,则成立(当日仅当时等号成立).猜想运用(3分)对于函数,当取何值时,函数的值最小?最小值是多少?变式探究(3分)对于函数,当取何值时,函数的值最小?最小值是多少?拓展应用(4分)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为().问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积最大?最大面积是多少?24.(本题满分12分)如图,直线与轴交于点,与轴交于点,点为线段的中点,点是线段上一动点(不与点、重合).(1)(3分)请直接写出点、点、点的坐标;(2)(3分)连接,在第一象限内将沿翻折得到,点的对应点为点.若,求线段的长;(3)在(2)的条件下,设抛物线的顶点为点.①(3分)若点在内部(不包括边),求的取值范围;②(3分)在平面直角坐标系内是否存在点,使最大?若存在,请直接写出点第43页(共43页),的坐标;若不存在,请说明理由.备用图1备用图2鄂州市2021年初中毕业生学业考试数学试卷参考答案及评分标准评卷说明:1.本卷满分1:20分。2.解答题按步骤给分。3.解答题仅提供一种解题方法,考生解题方法与参考答案不同的,只要合理、正确均给满分。一、选择题(每小题3分,共30分)题号12345678910答案AABCBDCBCD二、填空题(每小题3分,共18分)11.312.213.14.15.816.三、解答题(17~21题每题8分,22~23题每题10分,24题12分,共计72分)17.解:原式当时,原式18.解:(1)40,,(补全条形图略)(2).19.解:第43页(共43页),(1)四边形为平行四边形.理由如下:∵四边形为平行四边形∴∵∴∵四边形为平行四边形∴∴∴∵∴四边形为平行四边形(2)设,∵∴,∵四边形为平行四边形∴,,∵∴∴∵∴20.解:(1)依题意知:,,过点作于点,第43页(共43页),∵,∴∵,∴∵∴∴(2)∵,∴过点作于∵,∴∵∴,∵∴∴21.解:(1)设与之间的函数关系式,依题意得:解得:∴与之间的函数关系式为.(2)设老张明年种植该作物的总利润为元,依题意得:第43页(共43页),∵∴当时,随的增大而增大由题意知:当时,最大,最大值为268800元即种植面积为210亩时总利润最大,最大利润268800元22.(1)证明:∵∴又∵经过半径的外端点∴切于点∴(2)解:连接,∵为的直径∴∴又∵∴∴∵∴∴又∵∴即∵∴,第43页(共43页),又∵,∴∴设,则∴∴(舍去),即线段的长为.23.解:猜想运用:∵∴∴∴当时,此时只取即时,函数的最小值为2.变式探究:∵∴,∴∴当时,此时∴,(舍去)即时,函数的最小值为5.第43页(共43页),拓展应用:设每间隔离房与墙平行的边为米,与墙垂直的边为米,依题意得:即∵,∴即整理得:即∴当时此时,即每间隔离房长为米,宽为米时,的最大值为.24.解:(1),,(2)过点作于∵∴∴∵点∴,第43页(共43页),∴∵点∴∴即的长为1.(3)①∴其顶点的坐标为∴点是直线上一点∵,∴当时,又∵点在直线上∴当点在内部(不含边)时,的取值范围是.②存在点使最大.其坐标为.第43页(共43页),声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/6/2712:33:31;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第43页(共43页)
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)