首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
历年真题
>
2019年湖南省长沙市中考数学试卷
2019年湖南省长沙市中考数学试卷
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/29
2
/29
剩余27页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2019年湖南省长沙市中考数学试卷一、选择题(本题共12小题,每题3分,共36分)1.(3分)下列各数中,比﹣3小的数是( )A.﹣5B.﹣1C.0D.12.(3分)根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到15000000000元,确保安全供用电需求.数据15000000000用科学记数法表示为( )A.15×109B.1.5×109C.1.5×1010D.0.15×10113.(3分)下列计算正确的是( )A.3a+2b=5abB.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b24.(3分)下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°5.(3分)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是( )A.80°B.90°C.100°D.110°6.(3分)某个几何体的三视图如图所示,该几何体是( )第29页(共29页) A.B.C.D.7.(3分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A.平均数B.中位数C.众数D.方差8.(3分)一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A.2πB.4πC.12πD.24π9.(3分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )A.20°B.30°C.45°D.60°10.(3分)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )第29页(共29页) A.30nmileB.60nmileC.120nmileD.(30+30)nmile11.(3分)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.B.C.D.12.(3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是( )A.2B.4C.5D.10二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)式子在实数范围内有意义,则实数x的取值范围是 .14.(3分)分解因式:am2﹣9a= .15.(3分)不等式组的解集是 .第29页(共29页) 16.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是 .(结果保留小数点后一位)17.(3分)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是 m.18.(3分)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是 .(只填序号)三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。解答应写出必要的文字说明、证明过程或验算步骤)第29页(共29页) 19.(6分)计算:|﹣|+()﹣1﹣÷﹣2cos60°.20.(6分)先化简,再求值:(﹣)÷,其中a=3.21.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级频数频率优秀2142%良好m40%合格6n%待合格36%(1)本次调查随机抽取了 名学生;表中m= ,n= ;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.22.(8分)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.第29页(共29页) 23.(9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?24.(9分)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;( 命题)②三个角分别相等的两个凸四边形相似;( 命题)③两个大小不同的正方形相似.( 命题)(2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似.(3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值.25.(10分)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).第29页(共29页) (1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围;(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好≤≤,求m,n的值.26.(10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.第29页(共29页) 2019年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每题3分,共36分)1.(3分)下列各数中,比﹣3小的数是( )A.﹣5B.﹣1C.0D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:﹣5<﹣3<﹣1<0<1,所以比﹣3小的数是﹣5,故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到15000000000元,确保安全供用电需求.数据15000000000用科学记数法表示为( )A.15×109B.1.5×109C.1.5×1010D.0.15×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据15000000000用科学记数法表示为1.5×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列计算正确的是( )A.3a+2b=5abB.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b2【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.第29页(共29页) 【解答】解:A、3a与2b不是同类项,故不能合并,故选项A不合题意;B、(a3)2=a6,故选项B符合题意;C、a6÷a3=a3,故选项C不符合题意;D、(a+b)2=a2+2ab+b2,故选项D不合题意.故选:B.【点评】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.4.(3分)下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【解答】解:A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选:D.【点评】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.5.(3分)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是( )A.80°B.90°C.100°D.110°【分析】直接利用邻补角的定义结合平行线的性质得出答案.【解答】解:∵∠1=80°,∴∠3=100°,∵AB∥CD,第29页(共29页) ∴∠2=∠3=100°.故选:C.【点评】此题主要考查了平行线的性质以及邻补角的定义,正确掌握平行线的性质是解题关键.6.(3分)某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【分析】根据几何体的三视图判断即可.【解答】解:由三视图可知:该几何体为圆锥.故选:D.【点评】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.7.(3分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )第29页(共29页) A.平均数B.中位数C.众数D.方差【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【解答】解:11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.8.(3分)一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A.2πB.4πC.12πD.24π【分析】根据扇形的面积公式S=计算即可.【解答】解:S==12π,故选:C.【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S=是解题的关键.9.(3分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )A.20°B.30°C.45°D.60°【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.【解答】解:在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,第29页(共29页) ∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°,故选:B.【点评】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键.10.(3分)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )A.30nmileB.60nmileC.120nmileD.(30+30)nmile【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.【解答】解:过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.故选:D.第29页(共29页) 【点评】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.11.(3分)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.B.C.D.【分析】根据题意可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.12.(3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是( )A.2B.4C.5D.10第29页(共29页) 【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【解答】解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠ABE=90°,∵tanA==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AC,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选:B.【点评】第29页(共29页) 本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)式子在实数范围内有意义,则实数x的取值范围是 x≥5 .【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:式子在实数范围内有意义,则x﹣5≥0,故实数x的取值范围是:x≥5.故答案为:x≥5.【点评】此题主要考查了二次根式有意义的条件,正确把握相关定义是解题关键.14.(3分)分解因式:am2﹣9a= a(m+3)(m﹣3) .【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:am2﹣9a=a(m2﹣9)=a(m+3)(m﹣3).故答案为:a(m+3)(m﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)不等式组的解集是 ﹣1≤x<2 .【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.【解答】解:解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,故答案为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第29页(共29页) 16.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是 0.4 .(结果保留小数点后一位)【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解;【解答】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.17.(3分)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是 100 m.【分析】先判断出DE是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2DE,问题得解.【解答】解:∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=2×50=100米.故答案为:100.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.18.(3分)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:第29页(共29页) ①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是 ①③④ .(只填序号)【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.【解答】解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,第29页(共29页) ∴A(m,n),M(n,m),∴AM=(n﹣m),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∵m>1,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,第29页(共29页) ∴DM=2AM,故④正确.故答案为①③④.【点评】本题考查反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,学会构造平行线,利用平行线分线段成比例定理解决问题,属于中考填空题中的压轴题.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。解答应写出必要的文字说明、证明过程或验算步骤)19.(6分)计算:|﹣|+()﹣1﹣÷﹣2cos60°.【分析】根据绝对值的意义、二次根式的除法法则、负整数指数幂的意义和特殊角的三角函数值进行计算.【解答】解:原式=+2﹣﹣2×=+2﹣﹣1=1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(6分)先化简,再求值:(﹣)÷,其中a=3.【分析】先根据分式混合运算的法则把原式进行化简,再将a的值代入进行计算即可.【解答】解:原式=•第29页(共29页) =,当a=3时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级频数频率优秀2142%良好m40%合格6n%待合格36%(1)本次调查随机抽取了 50 名学生;表中m= 20 ,n= 12 ;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.【分析】(1)用优秀的人数除以优秀的人数所占的百分比即可得到总人数;(2)根据题意补全条形统计图即可得到结果;(3)全校2000名乘以“优秀”和“良好”等级的学生数所占的百分比即可得到结论.【解答】解:(1)本次调查随机抽取了21÷42%=50名学生,m=50×40%=20,n=×100=12,第29页(共29页) 故答案为:50,20,12;(2)补全条形统计图如图所示;(3)2000×=1640人,答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1640人.【点评】本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(8分)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.【分析】(1)由正方形的性质得出∠BAE=∠ADF=90°,AB=AD=CD,得出AE=DF,由SAS证明△BAE≌△ADF,即可得出结论;(2)由全等三角形的性质得出∠EBA=∠FAD,得出∠GAE+∠AEG=90°,因此∠AGE=90°,由勾股定理得出BE==5,在Rt△ABE中,由三角形面积即可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,第29页(共29页) ∴AE=DF,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE===5,在Rt△ABE中,AB×AE=BE×AG,∴AG==.【点评】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.23.(9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?【分析】(1)设增长率为x,根据“第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次”可列方程求解;(2)用2.42×(1+增长率),计算即可求解.【解答】解:(1)设增长率为x,根据题意,得2(1+x)2=2.42,解得x1=﹣2.1(舍去),x2=0.1=10%.答:增长率为10%.第29页(共29页) (2)2.42(1+0.1)=2.662(万人).答:第四批公益课受益学生将达到2.662万人次.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.(9分)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;( 假 命题)②三个角分别相等的两个凸四边形相似;( 假 命题)③两个大小不同的正方形相似.( 真 命题)(2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似.(3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值.【分析】(1)根据相似多边形的定义即可判断.(2)根据相似多边形的定义证明四边成比例,四个角相等即可.(3)四边形ABFE与四边形EFCD相似,证明相似比是1即可解决问题,即证明DE=AE即可.【解答】(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等.②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.③两个大小不同的正方形相似.是真命题.第29页(共29页) 故答案为假,假,真.(2)证明:如图1中,连接BD,B1D1.∵∠BCD=∠B1C1D1,且=,∴△BCD∽△B1C1D1,∴∠CDB=∠C1D1B1,∠C1B1D1=∠CBD,∵==,∴=,∵∠ABC=∠A1B1C1,∴∠ABD=∠A1B1D1,∴△ABD∽△A1B1D1,∴=,∠A=∠A1,∠ADB=∠A1D1B1,∴,===,∠ADC=∠A1D1C1,∠A=∠A1,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,∴四边形ABCD与四边形A1B1C1D1相似.(3)如图2中,第29页(共29页) ∵四边形ABCD与四边形EFCD相似.∴=,∵EF=OE+OF,∴=,∵EF∥AB∥CD,∴=,==,∴+=+,∴=,∵AD=DE+AE,∴=,∴2AE=DE+AE,∴AE=DE,∴=1.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,相似多边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.25.(10分)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围;(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好≤≤,求m,n的值.【分析】(1)利用抛物线的顶点坐标和二次函数解析式y=﹣2x2+(b﹣2)x+(c﹣2020)可知,y=﹣2(x﹣1)2+1,易得b、c的值;(2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),代入函数解析式,经过化简得到c=2x02+2020,易得c≥2020;(3)由题意知,抛物线为y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1,则y≤第29页(共29页) 1.利用不等式的性质推知:,易得1≤m<n.由二次函数图象的性质得到:当x=m时,y最大值=﹣2m2+4m﹣1.当x=n时,y最小值=﹣2n2+4n﹣1.所以=﹣2m2+4m﹣1,=﹣2n2+4n﹣1通过解方程求得m、n的值.【解答】解:(1)由题可知,抛物线解析式是:y=﹣2(x﹣1)2+1=﹣2x2+4x﹣1.∴.∴b=6,c=2019.(2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),代入解析式可得:.∴两式相加可得:﹣4x02+2(c﹣2020)=0.∴c=2x02+2020,∴c≥2020;(3)由(1)可知抛物线为y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1.∴y≤1.∵0<m<n,当m≤x≤n时,恰好≤≤,∴≤.∴.∴≤1,即m≥1.∴1≤m<n.∵抛物线的对称轴是x=1,且开口向下,∴当m≤x≤n时,y随x的增大而减小.∴当x=m时,y最大值=﹣2m2+4m﹣1.当x=n时,y最小值=﹣2n2+4n﹣1.又,第29页(共29页) ∴.将①整理,得2n3﹣4n2+n+1=0,变形,得2n2(n﹣1)﹣(2n+1)(n﹣1)=0.∴(n﹣1)(2n2﹣2n﹣1)=0.∵n>1,∴2n2﹣2n﹣1=0.解得n1=(舍去),n2=.同理,由②得到:(m﹣1)(2m2﹣2m﹣1)=0.∵1≤m<n,∴2m2﹣2m﹣1=0.解得m1=1,m2=(舍去),m3=(舍去).综上所述,m=1,n=.【点评】主要考查了二次函数综合题,解答该题时,需要熟悉二次函数图象上点的坐标特征,二次函数图象的对称性,二次函数图象的增减性,二次函数最值的意义以及一元二次方程的解法.该题计算量比较大,需要细心解答.难度较大.26.(10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.第29页(共29页) 【分析】(1)令y=0,可得ax(x+6)=0,则A点坐标可求出;(2)①连接PC,连接PB延长交x轴于点M,由切线的性质可证得∠ECD=∠COE,则CE=DE;②设OE=m,由CE2=OE•AE,可得,由∠CAE=∠OBE可得,则,综合整理代入可求出的值.【解答】解:(1)令ax2+6ax=0,ax(x+6)=0,∴A(﹣6,0);(2)①证明:如图,连接PC,连接PB延长交x轴于点M,∵⊙P过O、A、B三点,B为顶点,∴PM⊥OA,∠PBC+∠BOM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDP=∠CDE,第29页(共29页) ∴∠ECD=∠COE,∴CE=DE.②解:设OE=m,即E(m,0),由切割线定理得:CE2=OE•AE,∴(m﹣t)2=m•(m+6),∴①,∵∠CAE=∠CBD,∠CAE=∠OBE,∠CBO=∠EBO,由角平分线定理:,即:,∴②,由①②得,整理得:t2+18t+36=0,∴t2=﹣18t﹣36,∴.【点评】本题是二次函数与圆的综合问题,涉及二次函数图象与x轴的交点坐标、切线的性质、等腰三角形的判定、切割线定理等知识.把圆的知识镶嵌其中,会灵活运用圆的性质进行计算是解题的关键.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/7/17:46:04;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第29页(共29页)
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2020年湖南省长沙市中考数学试卷
2021年湖南省长沙市中考数学试卷
2021年湖南省长沙市中考数学试卷及答案解析
2021年长沙市中考数学试卷及解析
2021湖南省长沙市中考化学真题解析
2021年湖南省长沙市中考数学试卷及答案解析
2021年长沙市中考数学试卷及解析
2021湖南省长沙市中考化学真题解析
2021年湖南省长沙市中考数学试卷(无答案)_20210625_220703
2021年湖南省长沙市中考数学试卷(无答案)
文档下载
收藏
所属:
中考 - 历年真题
发布时间:2022-03-03 14:21:02
页数:29
价格:¥5
大小:514.50 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划