2020年山西省中考数学试卷
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
2020年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算(﹣6)÷(﹣)的结果是( )A.﹣18B.2C.18D.﹣22.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )A.B.C.D.3.下列运算正确的是( )A.3a+2a=5a2B.﹣8a2÷4a=2aC.(﹣2a2)3=﹣8a6D.4a3•3a2=12a64.下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是( )A.B.C.D.5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的( )A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似6.不等式组的解集是( )A.x>5B.3<x<5C.x<5D.x>﹣57.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=(k<0)的图象上,且x1<x2<0<x3,则y1,y2,y3的大小关系是( )A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y28.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是( )A.80πcm2B.40πcm2C.24πcm2D.2πcm29.竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为( )A.23.5mB.22.5mC.21.5mD.20.5m第21页(共21页),10.如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是( )A.B.C.D.二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:(+)2﹣= .12.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有 个三角形(用含n的代数式表示).13.某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了6次预选赛,其中甲,乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如下表所示:甲12.012.012.211.812.111.9乙12.312.111.812.011.712.1由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是 .14.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为 cm.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:(﹣4)2×(﹣)3﹣(﹣4+1).(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步第21页(共21页),=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第 步是进行分式的通分,通分的依据是 .或填为: ;②第 步开始出现错误,这一步错误的原因是 ;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.17.(6分)2020年5月份,省城太原开展了“活力太原•乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.(7分)如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F.求∠C和∠E的度数.19.(9分)2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.如图是其中的一个统计图.请根据图中信息,解答下列问题:第21页(共21页),(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是 亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G基站建设”和“人工智能”作为自己的就业方向.请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W,G,D,R,X的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画状图的方法求抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率.20.(8分)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是 ;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).21.(10分)图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC和DEF是闸机的“圆弧翼”第21页(共21页),,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角∠ABC=∠DEF=28°,半径BA=ED=60cm,点A与点D在同一水平线上,且它们之间的距离为10cm.(1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.22.(12分)综合与实践问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.猜想证明:(1)试判断四边形BE'FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.23.(13分)综合与探究如图,抛物线y=x2﹣x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,﹣3).(1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为m(m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.第21页(共21页),第21页(共21页),2020年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算(﹣6)÷(﹣)的结果是( )A.﹣18B.2C.18D.﹣2【解答】解:(﹣6)÷(﹣)=(﹣6)×(﹣3)=18.故选:C.2.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )A.B.C.D.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:D.3.下列运算正确的是( )A.3a+2a=5a2B.﹣8a2÷4a=2aC.(﹣2a2)3=﹣8a6D.4a3•3a2=12a6【解答】解:A、3a+2a=5a,故此选项错误;B、﹣8a2÷4a=﹣2a,故此选项错误;C、(﹣2a2)3=﹣8a6,正确;D、4a3•3a2=12a5,故此选项错误;故选:C.4.下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是( )A.B.第21页(共21页),C.D.【解答】解:A.主视图的底层是两个小正方形,上层右边是一个小正方形;左视图底层是两个小正方形,上层左边是一个小正方形,故本选项不合题意;B.主视图和左视图均为底层是两个小正方形,上层左边是一个小正方形,故本选项符合题意;C.主视图底层是三个小正方形,上层中间是一个小正方形;左视图是一列两个小正方形,故本选项不合题意;D.主视图底层是三个小正方形,上层右边是一个小正方形;左视图是一列两个小正方形,故本选项不合题意;故选:B.5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的( )A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似【解答】解:泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的图形的相似,故选:D.6.不等式组的解集是( )A.x>5B.3<x<5C.x<5D.x>﹣5【解答】解:解不等式2x﹣6>0,得:x>3,解不等式4﹣x<﹣1,得:x>5,则不等式组的解集为x>5.故选:A.7.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=(k<0)的图象上,且x1<x2<0<x3,则y1,y2,y3的大小关系是( )A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y2【解答】解:∵反比例函数y=(k<0)的图象分布在第二、四象限,在每一象限y随x的增大而增大,而x1<x2<0<x3,∴y3<0<y1<y2.即y2>y1>y3.故选:A.8.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD第21页(共21页),=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是( )A.80πcm2B.40πcm2C.24πcm2D.2πcm2【解答】解:如图,连接CD.∵OC=OD,∠O=60°,∴△COD是等边三角形,∴OC=OD=CD=4cm,∴S阴=S扇形OAB﹣S扇形OCD=﹣=40π(cm2),故选:B.9.竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为( )A.23.5mB.22.5mC.21.5mD.20.5m【解答】解:由题意可得,h=﹣5t2+20t+1.5=﹣5(t﹣2)2+21.5,故当t=2时,h取得最大值,此时h=21.5,故选:C.10.如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是( )A.B.C.D.【解答】解:由图形知阴影部分的面积是大矩形面积的,∴飞镖落在阴影区域的概率是,故选:B.二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:(+)2﹣= 5 .【解答】解:原式=3+2+2﹣2=5.故答案为5.12.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n第21页(共21页),个图案有 (3n+1) 个三角形(用含n的代数式表示).【解答】解:第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即7=3×2+1第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n个图案有(3n+1)个三角形.故答案为:(3n+1).13.某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了6次预选赛,其中甲,乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如下表所示:甲12.012.012.211.812.111.9乙12.312.111.812.011.712.1由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是 甲 .【解答】解:甲的平均成绩为:(12.0+12.0+12.2+11.8+12.1+11.9)=12秒,乙的平均成绩为:(12.3+12.1+11.8+12.0+11.7+12.1)=12秒;分别计算甲、乙两人的百米赛跑成绩的方差为:S甲2=[(12.2﹣12)2+(11.8﹣12)2+(12.1﹣12)2+(11.9﹣12)2]=,S乙2=[(12.3﹣12)2+2(12.1﹣12)2+(11.8﹣12)2+(11.7﹣12)2]=,∵<,∴甲运动员的成绩更为稳定;故答案为:甲.14.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为 2 cm.【解答】解:设底面长为acm,宽为bcm,正方形的边长为xcm,根据题意得:,解得a=10﹣2x,b=6﹣x,代入ab=24中,得:(10﹣2x)(6﹣x)=24,整理得:x2﹣11x+18=0,第21页(共21页),解得x=2或x=9(舍去),答;剪去的正方形的边长为2cm.故答案为:2.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为 .【解答】解:如图,过点F作FH⊥AC于H.在Rt△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD=,AD===,∵FH∥EC,∴=,∵EC=EB=2,∴=,设FH=2k,AH=3k,CH=3﹣3k,∵tan∠FCH==,∴=,∴k=,∴FH=,CH=3﹣=,∴CF===,∴DF=﹣=,故答案为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)第21页(共21页),16.(10分)(1)计算:(﹣4)2×(﹣)3﹣(﹣4+1).(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第 三 步是进行分式的通分,通分的依据是 分式的基本性质 .或填为: 分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变 ;②第 五 步开始出现错误,这一步错误的原因是 括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号 ;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【解答】解:(1)(﹣4)2×(﹣)3﹣(﹣4+1)=16×(﹣)+3=﹣2+3=1;(2)①以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质.或填为:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;②第五步开始出现错误,这一步错误的原因是括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;任务二:﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步;第21页(共21页),任务三:答案不唯一,如:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.故答案为:三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号.17.(6分)2020年5月份,省城太原开展了“活力太原•乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.【解答】解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x元,根据题意,得80%×(1+50%)x﹣128=568,解得x=580.答:该电饭煲的进价为580元.18.(7分)如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F.求∠C和∠E的度数.【解答】解:连接OB,如图,∵⊙O与AB相切于点B,∴OB⊥AB,∵四边形ABCO为平行四边形,∴AB∥OC,OA∥BC,∴OB⊥OC,∴∠BOC=90°,∵OB=OC,∴△OCB为等腰直角三角形,∴∠C=∠OBC=45°,∵AO∥BC,∴∠AOB=∠OBC=45°,∴∠E=∠AOB=22.5°.19.(9分)2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”第21页(共21页),中五大细分领域(5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.如图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是 300 亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G基站建设”和“人工智能”作为自己的就业方向.请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W,G,D,R,X的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画状图的方法求抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率.【解答】解:(1)2020年“新基建”七大领域预计投资规模按照从小到大排列为100、160、200、300、300、500、640,∴图中2020年“新基建”七大领域预计投资规模的中位数是300亿元,故答案为:300;(2)甲更关注在线职位的增长率,在“新基建”五大细分领域中,2020年一季度“5G基站建设”在线职位与2019年同期相比增长率最高;乙更关注预计投资规模,在“新基建”五大细分领域中,“人工智能”在2020年预计投资规模最大;(3)列表如下:WGDRXW(G,W)(D,W)(R,W)(X,W)G(W,G)(D,G)(R,G)(X,G)D(W,D)(G,D)(R,D)(X,D)第21页(共21页),R(W,R)(G,R)(D,R)(X,R)X(W,X)(G,X)(D,X)(R,X)由表可知,共有20种等可能结果,其中抽到“W”和“R”的结果有2种,∴抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率=.20.(8分)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是 勾股定理的逆定理 ;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).【解答】解:(1)∵CD=30,DE=50,CE=40,∴CD2+CE2=302+402=502=DE2,∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理;故答案为:勾股定理的逆定理;(2)由作图方法可知,QP=QC,QS=QC,∴∠QCR=∠QRC,∠QCS=∠QSC,∵∠SRC+∠RCS+∠QRC+∠QSC=180°,∴2(∠QCR+∠QCS)=180°,∴∠QCR+∠QCS=90°,即∠RCS=90°;(3)①如图③所示,直线PC即为所求;②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.第21页(共21页),21.(10分)图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC和DEF是闸机的“圆弧翼”,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角∠ABC=∠DEF=28°,半径BA=ED=60cm,点A与点D在同一水平线上,且它们之间的距离为10cm.(1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.【解答】解:(1)连接AD,并向两方延长,分别交BC,EF于M,N,由点A,D在同一条水平线上,BC,EF均垂直于地面可知,MN⊥BC,MN⊥EF,所以MN的长度就是BC与EF之间的距离,同时,由两圆弧翼成轴对称可得,AM=DN,在Rt△ABM中,∠AMB=90°,∠ABM=28°,AB=60cm,∵sin∠ABM=,∴AM=AB•sin∠ABM=60•sin28°≈60×0.47=28.2,∴MN=AM+DN+AD=2AM+AD=28.2×2+10=66.4,∴BC与EF之间的距离为66.4cm;(2)设一个人工检票口平均每分钟检票通过的人数为x人,根据题意得,,解得:x=30,经检验,x=30是原方程的根,当x=30时,2x=60,答:一个智能闸机平均每分钟检票通过的人数为60人.第21页(共21页),22.(12分)综合与实践问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.猜想证明:(1)试判断四边形BE'FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.【解答】解:(1)四边形BE'FE是正方形,理由如下:∵将Rt△ABE绕点B按顺时针方向旋转90°,∴∠AEB=∠CE'B=90°,BE=BE',∠EBE'=90°,又∵∠BEF=90°,∴四边形BE'FE是矩形,又∵BE=BE',∴四边形BE'FE是正方形;(2)CF=E'F;理由如下:如图②,过点D作DH⊥AE于H,第21页(共21页),∵DA=DE,DH⊥AE,∴AH=AE,DH⊥AE,∴∠ADH+∠DAH=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAH+∠EAB=90°,∴∠ADH=∠EAB,又∵AD=AB,∠AHD=∠AEB=90°,∴△ADH≌△BAE(AAS),∴AH=BE=AE,∵将Rt△ABE绕点B按顺时针方向旋转90°,∴AE=CE',∵四边形BE'FE是正方形,∴BE=E'F,∴E'F=CE',∴CF=E'F;(3)如图①,过点D作DH⊥AE于H,∵四边形BE'FE是正方形,∴BE'=E'F=BE,∵AB=BC=15,CF=3,BC2=E'B2+E'C2,∴225=E'B2+(E'B+3)2,∴E'B=9=BE,∴CE'=CF+E'F=12,由(2)可知:BE=AH=9,DH=AE=CE'=12,∴HE=3,∴DE===3.23.(13分)综合与探究如图,抛物线y=x2﹣x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,﹣3).(1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为m(m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.第21页(共21页),【解答】解:(1)令y=0,得y=x2﹣x﹣3=0,解得,x=﹣2,或x=6,∴A(﹣2,0),B(6,0),设直线l的解析式为y=kx+b(k≠0),则,解得,,∴直线l的解析式为;(2)如图1,根据题意可知,点P与点N的坐标分别为P(m,m2﹣m﹣3),N(m,m﹣1),∴PM=﹣m2+m+3,MN=m+1,NP=﹣m2+m+2,分两种情况:①当PM=3MN时,得﹣m2+m+3=3(m+1),解得,m=0,或m=﹣2(舍),∴P(0,﹣3);②当PM=3NP时,得﹣m2+m+3=3(﹣m2+m+2),解得,m=3,或m=﹣2(舍),第21页(共21页),∴P(3,﹣);∴当点N是线段PM的三等分点时,点P的坐标为(3,﹣)或(0,﹣3);(3)∵直线l:与y轴于点E,∴点E的坐标为(0,﹣1),分再种情况:①如图2,当点Q在y轴的正半轴上时,记为点Q1,过Q1作Q1H⊥AD于点H,则∠Q1HE=∠AOE=90°,∵∠Q1EH=∠AEO,∴△Q1EH∽△AEO,∴,即∴Q1H=2HE,∵∠Q1DH=45°,∠Q1HD=90°,∴Q1H=DH,∴DH=2EH,∴HE=ED,连接CD,∵C(0,﹣3),D(4,﹣3),∴CD⊥y轴,∴ED=,∴,,∴,∴Q1O=Q1E﹣OE=9,∴Q1(0,9);②如图3,当点Q在y轴的负半轴上时,记为点Q2,过Q2作Q2G⊥AD于G,则∠Q2GE=∠AOE=90°,第21页(共21页),∵∠Q2EG=∠AEO,∴△Q2GE∽△AOE,∴,即,∴Q2G=2EG,∵∠Q2DG=45°,∠Q2GD=90°,∴∠DQ2G=∠Q2DG=45°,∴DG=Q2G=2EG,∴ED=EG+DG=3EG,由①可知,ED=2,∴3EG=2,∴,∴,∴,∴,,综上,点Q的坐标为(0,9)或(0,﹣).声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/8/613:41:44;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第21页(共21页)
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)