首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高中
>
数学
>
人教A版
>
选修2-1
>
第二章 圆锥曲线与方程
>
2.2 椭圆
>
2.2.1 椭圆及其标准方程
>
高中数学人教A版选修2-1第2章2.2.1椭圆及其标准方程教学设计
高中数学人教A版选修2-1第2章2.2.1椭圆及其标准方程教学设计
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2.2.1椭圆及其标准方程知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.过程与方法目标预习与引入过程当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm长,两端各结一个套),教师准备无弹性细绳子一条(约60cm,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗2.1.1椭圆及其标准方程.新课讲授过程\n(i)由上述探究过程容易得到椭圆的定义.〖板书〗把平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆(ellipse).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为时,椭圆即为点集.(ii)椭圆标准方程的推导过程提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.设参量的意义:第一、便于写出椭圆的标准方程;第二、的关系有明显的几何意义.类比:写出焦点在轴上,中心在原点的椭圆的标准方程.(iii)例题讲解与引申例1已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.分析:由椭圆的标准方程的定义及给出的条件,容易求出\n.引导学生用其他方法来解.另解:设椭圆的标准方程为,因点在椭圆上,则.例2如图,在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?分析:点在圆上运动,由点移动引起点的运动,则称点是点的伴随点,因点为线段的中点,则点的坐标可由点来表示,从而能求点的轨迹方程.引申:设定点,是椭圆上动点,求线段中点的轨迹方程.解法剖析:①(代入法求伴随轨迹)设,;②(点与伴随点的关系)∵为线段的中点,∴;③(代入已知轨迹求出伴随轨迹),∵,∴点的轨迹方程为;④伴随轨迹表示的范围.\n例3如图,设,的坐标分别为,.直线,相交于点,且它们的斜率之积为,求点的轨迹方程.分析:若设点,则直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关系式,即得到点的轨迹方程.解法剖析:设点,则,;代入点的集合有,化简即可得点的轨迹方程.引申:如图,设△的两个顶点,,顶点在移动,且,且,试求动点的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当值在变化时,线段的角色也是从椭圆的长轴→圆的直径→椭圆的短轴.情感、态度与价值观目标\n通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;必须让学生认同与体会:椭圆的定义及特殊情形当常数等于两定点间距离时,轨迹是线段;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,及引入参量的意义,培养学生用对称的美学思维来体现数学的和谐美;让学生认同与领悟:例1使用定义解题是首选的,但也可以用其他方法来解,培养学生从定义的角度思考问题的好习惯;例2是典型的用代入法求动点的伴随点的轨迹,培养学生的辩证思维方法,会用分析、联系的观点解决问题;通过例3培养学生的对问题引申、分段讨论的思维品质.能力目标想象与归纳能力:能根据课程的内容能想象日常生活中哪些是椭圆、双曲线和抛物线的实际例子,能用数学符号或自然语言的描述椭圆的定义,能正确且直观地绘作图形,反过来根据图形能用数学术语和数学符号表示.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.\n实践能力:培养学生实际动手能力,综合利用已有的知识能力.1、数学活动能力:培养学生观察、实验、探究、验证与交流等数学活动能力.2、创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.练习:第45页1、2、3、4、作业:第53页2、3、
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
高中数学人教A版选修1-1第2章2.1.1椭圆及其标准方程1教学设计
高中数学人教A版选修1-1第2章2.1.1椭圆及其标准方程2教学设计
高中数学人教A版选修1-1第2章2.2.1双曲线的及其标准方程教学设计
高中数学人教A版选修1-1第2章2.3.1抛物线及其标准方程教学设计
高中数学人教A版选修2-1第2章2.1.2求曲线的方程教学设计
高中数学人教A版选修2-1第2章2.2.2椭圆的简单几何性质1教学设计
高中数学人教A版选修2-1第2章2.2.2椭圆的简单几何性质2教学设计
高中数学人教A版选修2-1第2章2.2.2椭圆的简单几何性质3教学设计
高中数学人教A版选修2-1第2章2.3.1双曲线及其标准方程教学设计
高中数学人教A版选修2-1第2章2.4.1抛物线及标准方程教学设计
文档下载
收藏
所属:
高中 - 数学
发布时间:2022-08-22 20:00:08
页数:6
价格:¥3
大小:120.93 KB
文章作者:182****8598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划