首页

第15章轴对称图形和等腰三角形15.3等腰三角形第1课时等腰三角形的性质定理及推论课件(沪科版八上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/37

2/37

3/37

4/37

剩余33页未读,查看更多内容需下载

第15章轴对称图形与等腰三角形15.3等腰三角形第1课时等腰三角形的性质定理及推论\n1.了解等腰三角形的性质,掌握等腰三角形的性质定理及推论,会用定理及推论解决简单问题;(重点)2.进一步培养学生分析问题、解决问题的能力,渗透转化思想;3.培养学生探究思维、逻辑推理能力以及如何规范证明题书写格式等学习方法.(难点)学习目标\n导入新课等腰三角形情境引入\n定义及相关概念有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.ACB腰腰底边顶角底角底角\n讲授新课☆等腰三角形的性质1剪一剪:把一张长方形的纸按图中的红线对折,并剪去阴影部分(一个直角三角形),再把得到的直角三角形展开,得到的三角形ABC有什么特点?互动探究\nABCAB=AC等腰三角形\n折一折:△ABC是轴对称图形吗?它的对称轴是什么?ACDB折痕所在的直线是它的对称轴.\n找一找:把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.重合的线段重合的角ACBDAB与ACBD与CDAD与AD∠B与∠C.∠BAD与∠CAD∠ADB与∠ADC等腰三角形是轴对称图形.猜一猜:由这些重合的角,你能发现等腰三角形的性质吗?\n定理1等腰三角形的两个底角相等(等边对等角).ABCD猜想与验证已知:△ABC中,AB=AC,求证:∠B=∠C.证法1:作底边BC边上的中线AD.在△ABD与△ACD中:AB=AC(已知),BD=DC(作图),AD=AD(公共边),∴△ABD≌△ACD(SSS).∴∠B=∠C.应用格式:∵AB=AC(已知)∴∠B=∠C(等边对等角)\n证法2:作顶角∠BAC的平分线AD,交BC于点D.∵AD平分∠BAC,∴∠1=∠2.在△ABD与△ACD中,AB=AC(已知),∠1=∠2(已证),AD=AD(公共边),∴△ABD≌△ACD(SAS),∴∠B=∠C.ABCD((12\n证法3:作底边BC的高AD,交BC于点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD与Rt△ACD中,AB=AC(已知),AD=AD(公共边),∴Rt△ABD≌Rt△ACD(HL),∴∠B=∠C.ABCD\n解:∵AB=AC,(已知)∴∠B=∠C,(等边对等角)∴∠B=∠C=×(180°-120°)=30°.又∵BD=AD,(已知)∴∠BAD=∠B=30°.(等边对等角)同理,∠CAE=∠C=30°.∴∠DAE=∠BAC-∠BAD-∠CAE=120°-30°-30°=60°.例1如图,在ΔABC中,AB=AC,∠BAC=120°,点D,E是底边上两点,且BD=AD,CE=AE.求∠DAE的度数.\n(2)设∠A=x,请把△ABC的内角和用含x的式子表示出来.ABCDx⌒2x⌒2x⌒⌒2x例2如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解析:(1)观察∠BDC与∠A、∠ABD的关系,∠ABC、∠C呢?∠BDC=∠A+∠ABD=2∠A=2∠ABD,∠ABC=∠C=∠BDC=2∠A,∠C=∠BDC=2∠A.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,\nABCD解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD.设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x,于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°,在△ABC中,∠A=36°,∠ABC=∠C=72°.x⌒2x⌒2x⌒⌒2x方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x.\n【变式题】如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.解:∵AB=AD=DC,∴∠B=∠ADB,∠C=∠DAC.设∠C=x,则∠DAC=x,∠B=∠ADB=∠C+∠DAC=2x.在△ABC中,根据三角形内角和定理得2x+x+26°+x=180°,解得x=38.5°.∴∠C=x=38.5°,∠B=2x=77°.\n例3等腰三角形的一个内角是50°,求这个三角形的底角的度数.解:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.\n☆等腰三角形的性质2建筑工人在盖房子时,用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边中点,就说房梁是水平的,你知道为什么吗?\nACB证明后的结论,以后可以直接运用.总结归纳性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合(三线合一).\nACBD12∵AB=AC,∠1=∠2(已知),∴BD=CD,AD⊥BC(等腰三角形三线合一).∵AB=AC,BD=CD(已知),∴∠1=∠2,AD⊥BC(等腰三角形三线合一).∵AB=AC,AD⊥BC(已知),∴BD=CD,∠1=∠2(等腰三角形三线合一).综上可得:如图,在△ABC中,\n画出任意一个等腰三角形的底角平分线、这个底角所对的腰上的中线和高,看看它们是否重合?不重合!三线合一为什么不一样?\n1.等腰三角形的顶角一定是锐角.2.等腰三角形的底角可能是锐角或者直角、钝角都可以.3.钝角三角形不可能是等腰三角形.4.等腰三角形的顶角平分线一定垂直底边.5.等腰三角形的角平分线、中线和高互相重合.6.等腰三角形底边上的中线一定平分顶角.XXXX√√判一判\n例4如图,点D、E在△ABC的边BC上,AB=AC.(1)若AD=AE,求证:BD=CE;(2)若BD=CE,F为DE的中点,如图②,求证:AF⊥BC.典例精析图②图①\n证明:(1)如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG,∴BG-DG=CG-EG,∴BD=CE;(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.图②图①G\n总结:在等腰三角形有关计算或证明中,有时需要添加辅助线,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.\n☆等腰三角形的性质定理的推论类比探究ABCABC问题1等边三角形的三个内角之间有什么关系?等腰三角形AB=AC∠B=∠C等边三角形AB=AC=BCAB=AC∠B=∠CAC=BC∠A=∠B∠A=∠B=∠C=60°内角和为180°\n推论:等边三角形的三个内角都相等,并且每一个角都等于60°.已知:AB=AC=BC,求证:∠A=∠B=∠C=60°.证明:∵AB=AC.∴∠B=∠C.(等边对等角)同理∠A=∠C.∴∠A=∠B=∠C.∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°.ABC\nABCABC问题2等边三角形有“三线合一”的性质吗?等边三角形有几条对称轴?结论:等边三角形每条边上的中线,高和所对角的平分线都“三线合一”.顶角的平分线、底边的高底边的中线三线合一一条对称轴三条对称轴\n例5如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵∠ABE=40°,∴∠EBC=∠ABC-∠ABE=60°-40°=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°.总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常应用在求三角形角度的问题上,一般需结合”等边对等角”、三角形的内角和与外角的性质.\n变式训练:如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.证明:∵△ABC是等边三角形,BD是角平分线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).\n当堂练习2.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为(  )A.40°B.30°C.70°D.50°A1.等腰三角形有一个角是90°,则另两个角分别是()A.30°,60°B.45°,45°C.45°,90°D.20°,70°B\n3.(1)等腰三角形一个底角为75°,它的另外两个角为______;(2)等腰三角形一个角为36°,它的另外两个角为____________________;(3)等腰三角形一个角为120°,它的另外两个角为______.75°,30°72°,72°或36°,108°30°,30°\n4.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交得的锐角为50°,则底角的大小为___________.ABCABC70°或20°注意:当题目为给定三角形的形状时,一般需分锐角三角形和钝角三角形两种情况进行分类讨论.\n5.如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠BAD和∠ADC的度数.ABCD解:∵AB=AC,D是BC边上的中点,∴∠C=∠B=30°,∠BAD=∠DAC,∠ADC=90°.∴∠BAC=180°-30°-30°=120°.=60°.\n6.如图,已知△ABC为等腰三角形,BD、CE为底角的平分线,且∠DBC=∠F,求证:EC∥DF.∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.证明:∵△ABC为等腰三角形,AB=AC,∴∠ABC=∠ACB.又∵BD、CE为底角的平分线,\n7.△ABC为正三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BM=CN,BN与AM相交于Q点,∠BQM等于多少度?解:∵△ABC为正三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC.又∵BM=CN,∴△AMB≌△BCN(SAS),∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=∠ABC=60°.\n8.A、B是4×4网格中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.AB分别以A、B、C为顶角顶点来分类讨论!8个这样分类就不会漏啦!C1C2C3C4C5C6C7C8拓展提升:\n课堂小结等腰三角形的性质等边对等角三线合一注意是指同一个三角形中注意是指顶角的平分线,底边上的高和中线才有这一性质.而腰上高和中线与底角的平分线不具有这一性质.推论等边三角形三个内角相等,且均等于60°

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-08-18 18:00:04 页数:37
价格:¥3 大小:1.05 MB
文章作者:随遇而安

推荐特供

MORE