首页

2022八年级数学上学期期末试卷3(新人教版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/19

2/19

剩余17页未读,查看更多内容需下载

期末试卷(3)一、选择题:(每题2分,共20分)1.(2分)下列说法中正确的是(  )A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等2.(2分)下列各式中,正确的是(  )A.y3•y2=y6B.(a3)3=a6C.(﹣x2)3=﹣x6D.﹣(﹣m2)4=m83.(2分)计算(x﹣3y)(x+3y)的结果是(  )A.x2﹣3y2B.x2﹣6y2C.x2﹣9y2D.2x2﹣6y24.(2分)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为(  )A.2B.3C.5D.2.55.(2分)若2a3xby+5与5a2﹣4yb2x是同类项,则(  )A.B.C.D.6.(2分)如图图案中,既是轴对称图形又是中心对称图形的有(  )A.1个B.2个C.3个D.4个7.(2分)若分式的值为零,则x的值是(  )A.2或﹣2B.2C.﹣2D.48.(2分)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为(  )19\nA.0B.1C.2D.39.(2分)满足下列哪种条件时,能判定△ABC与△DEF全等的是(  )A.∠A=∠E,AB=EF,∠B=∠DB.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠ED.∠A=∠D,AB=DE,∠B=∠E10.(2分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是(  )A.10cmB.12cmC.15cmD.17cm 二、填空题(每题3分,共30分)11.(3分)当a  时,分式有意义.12.(3分)计算:3x2•(﹣2xy3)=  ,(3x﹣1)(2x+1)=  .13.(3分)多项式x2+2mx+64是完全平方式,则m=  .14.(3分)若a+b=4,ab=3,则a2+b2=  .15.(3分)用科学记数法表示0.00000012为  .16.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ABD=  .17.(3分)线段AB=4cm,P为AB中垂线上一点,且PA=4cm,则∠APB=  度.18.(3分)若实数x满足,则的值=  .19.(3分)某市在“新课程创新论坛”活动中,对收集到的60篇”新课程创新论文”进行评比,将评比成级分成五组画出如图所示的频数分布直方图.由直方图可得,这次评比中被评为优秀的论文有  篇.(不少于90分者为优秀)19\n20.(3分)如图,一个矩形(向左右方向)推拉窗,窗高1.55米,则活动窗扇的通风面积S(平方米)与拉开长度b(米)的关系式是  . 三、解答题(共50分)21.(6分)分解因式(1)a3﹣ab2(2)a2+6ab+9b2.22.(8分)解方程:(1)(2).23.(6分)先化简,再求值:(﹣)÷,其中x=3.24.(6分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.19\n25.(7分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.26.(7分)如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.27.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE. 19\n参考答案与试题解析一、选择题:(每题2分,共20分)1.(2分)下列说法中正确的是(  )A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等【考点】全等三角形的判定.【分析】根据全等三角形的判定方法对各选项分析判断后利用排除法求解.【解答】解:A、两个直角三角形只能说明有一个直角相等,其他条件不明确,所以不一定全等,故本选项错误;B、两个等腰三角形,腰不一定相等,夹角也不一定相等,所以不一定全等,故本选项错误;C、两个等边三角形,边长不一定相等,所以不一定全等,故本选项错误;D、它们的夹角是直角相等,可以根据边角边定理判定全等,正确.故选D.【点评】本题主要考查全等三角形的判定,熟练掌握判定定理是解题的关键. 2.(2分)下列各式中,正确的是(  )A.y3•y2=y6B.(a3)3=a6C.(﹣x2)3=﹣x6D.﹣(﹣m2)4=m8【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项计算后利用排除法求解.【解答】解:A、应为y3•y2=y5,故本选项错误;B、应为(a3)3=a9,故本选项错误;C、(﹣x2)3=﹣x6,正确;D、应为﹣(﹣m2)4=﹣m8,故本选项错误.故选C.【点评】本题考查同底数幂的乘法的性质,幂的乘方的性质,熟练掌握运算性质是解题的关键.19\n 3.(2分)计算(x﹣3y)(x+3y)的结果是(  )A.x2﹣3y2B.x2﹣6y2C.x2﹣9y2D.2x2﹣6y2【考点】平方差公式.【分析】直接利用平方差公式计算即可.【解答】解:(x﹣3y)(x+3y),=x2﹣(3y)2,=x2﹣9y2.故选C.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方. 4.(2分)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为(  )A.2B.3C.5D.2.5【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等. 19\n5.(2分)若2a3xby+5与5a2﹣4yb2x是同类项,则(  )A.B.C.D.【考点】同类项;解二元一次方程组.【分析】根据同类项的定义,即所含字母相同,且相同字母的指数也相同,相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.【解答】解:由同类项的定义,得,解得.故选:B.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值. 6.(2分)如图图案中,既是轴对称图形又是中心对称图形的有(  )A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形既是轴对称图形又是中心对称图形,第二个图形既是轴对称图形又是中心对称图形,第三个图形不是轴对称图形,是中心对称图形,第四个图形是轴对称图形,不是中心对称图形,故选:B.【点评】19\n本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 7.(2分)若分式的值为零,则x的值是(  )A.2或﹣2B.2C.﹣2D.4【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:由x2﹣4=0,得x=±2.当x=2时,x2﹣x﹣2=22﹣2﹣2=0,故x=2不合题意;当x=﹣2时,x2﹣x﹣2=(﹣2)2﹣(﹣2)﹣2=4≠0.所以x=﹣2时分式的值为0.故选C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点. 8.(2分)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为(  )A.0B.1C.2D.3【考点】全等三角形的判定.【分析】根据AB=AC,得∠B=∠C,再由BD=CE,得△ABD≌△ACE,进一步推得△ABE≌△ACD【解答】解:∵AB=AC,∴∠B=∠C,又BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形的对应边相等),∴∠AEB=∠ADC,∴△ABE≌△ACD(AAS).故选C.19\n【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目. 9.(2分)满足下列哪种条件时,能判定△ABC与△DEF全等的是(  )A.∠A=∠E,AB=EF,∠B=∠DB.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠ED.∠A=∠D,AB=DE,∠B=∠E【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL.逐条判断即可.【解答】解:A、边不是两角的夹边,不符合ASA;B、角不是两边的夹角,不符合SAS;C、角不是两边的夹角,不符合SAS;D、符合ASA能判定三角形全等;仔细分析以上四个选项,只有D是正确的.故选:D.【点评】重点考查了全等三角形的判定.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 10.(2分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是(  )A.10cmB.12cmC.15cmD.17cm【考点】线段垂直平分线的性质.【分析】求△ABC的周长,已经知道AE=3cm,则知道AB=6cm,只需求得BC+AC即可,根据线段垂直平分线的性质得AD=BD,于是BC+AC等于△ADC的周长,答案可得.【解答】解:∵AB的垂直平分AB,∴AE=BE,BD=AD,19\n∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9+2×3=15cm,故选:C.【点评】此题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.对线段进行等效转移时解答本题的关键. 二、填空题(每题3分,共30分)11.(3分)当a ≠﹣ 时,分式有意义.【考点】分式有意义的条件.【分析】根据分式有意义的条件可得2a+3≠0,再解即可.【解答】解:由题意得:2a+3≠0,解得:a≠﹣,故答案为:≠﹣.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零. 12.(3分)计算:3x2•(﹣2xy3)= ﹣6x3y3 ,(3x﹣1)(2x+1)= 6x2+x﹣1 .【考点】多项式乘多项式;单项式乘多项式.【分析】第一题按单项式乘单项式的法则计算,第二题按多项式乘多项式的法则计算.【解答】解:3x2•(﹣2xy3)=﹣6x3y3,(3x﹣1)(2x+1)=6x2+3x﹣2x﹣1=6x2+x﹣1.【点评】本题主要考查了单项式乘单项式、多项式乘多项式的运算,要熟练掌握单项式乘单项式的法则和多项式乘多项式的法则.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. 13.(3分)多项式x2+2mx+64是完全平方式,则m= ±8 .19\n【考点】完全平方式.【分析】根据完全平方公式结构特征,这里首尾两数是x和8的平方,所以中间项为加上或减去它们乘积的2倍.【解答】解:∵x2+2mx+64是完全平方式,∴2mx=±2•x•8,∴m=±8.【点评】本题是完全平方公式的应用,要熟记完全平方公式的结构特征:两数的平方和,再加上或减去它们乘积的2倍,为此应注意积的2倍有符号有正负两种,避免漏解. 14.(3分)若a+b=4,ab=3,则a2+b2= 10 .【考点】完全平方公式.【专题】计算题.【分析】首先根据完全平方公式将a2+b2用(a+b)与ab的代数式表示,然后把a+b,ab的值整体代入求值.【解答】解:∵a+b=4,ab=3,∴a2+b2=(a+b)2﹣2ab,=42﹣2×3,=16﹣6,=10.故答案为:10.【点评】本题考查了完全平方公式,关键是要熟练掌握完全平方公式的变形,做到灵活运用. 15.(3分)用科学记数法表示0.00000012为 1.2×10﹣7 .【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7.故答案为1.2×10﹣7.19\n【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 16.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ABD= 36° .【考点】等腰三角形的性质.【分析】设∠ABD=x,根据等边对等角的性质求出∠A,∠C=∠BDC=∠ABC,再根据三角形的一个外角等于与它不相邻的两个内角的和用x表示出∠C,然后利用三角形的内角和定理列式进行计算即可得解.【解答】解:设∠ABD=x,∵BC=AD,∴∠A=∠ABD=x,∵BD=BC,∴∠C=∠BDC,根据三角形的外角性质,∠BDC=∠A+∠ABD=2x,∵AB=AC,∴∠ABC=∠C=2x,在△ABC中,∠A+∠ABC+∠=180°,即x+2x+2x=180°,解得x=36°,即∠ABD=36°.故答案为:36°.【点评】本题主要考查了等腰三角形的性质,主要利用了等边对等角的性质,三角形的内角和定理,三角形外角性质,是基础题,熟记性质是解题的关键. 17.(3分)线段AB=4cm,P为AB中垂线上一点,且PA=4cm,则∠APB= 60 度.【考点】线段垂直平分线的性质.19\n【分析】根据垂直平分线上的点到线段两端的距离相等和30°的角所对的直角边是斜边的一半解答.【解答】解:如图,因为PC⊥AB则∠ACP=90°又因为AC=BC则AC=AB=×4=2cm在Rt△PAC中,∠APC=30°所以∠APB=2×30°=60°.【点评】本题主要考查了线段的垂直平分线上的性质和30°的角所对的直角边是斜边的一半. 18.(3分)若实数x满足,则的值= 7 .【考点】完全平方公式.【专题】计算题.【分析】先根据完全平方公式变形得到x2+=(x+)2﹣2,然后把满足代入计算即可.【解答】解:x2+=(x+)2﹣2=32﹣2=7.故答案为7.【点评】本题考查了完全平方公式:(x±y)2=x2±2xy+y2.也考查了代数式的变形能力以及整体思想的运用. 19\n19.(3分)某市在“新课程创新论坛”活动中,对收集到的60篇”新课程创新论文”进行评比,将评比成级分成五组画出如图所示的频数分布直方图.由直方图可得,这次评比中被评为优秀的论文有 15 篇.(不少于90分者为优秀)【考点】频数(率)分布直方图.【专题】图表型.【分析】根据题意可得不少于90分者为优秀,读图可得分数低于90分的作文篇数.再根据作文的总篇数为60,计算可得被评为优秀的论文的篇数.【解答】解:由图可知:优秀作文的频数=60﹣3﹣9﹣21﹣12=15篇;故答案为15.【点评】本题属于统计内容,考查分析频数分布直方图和频数的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图. 20.(3分)如图,一个矩形(向左右方向)推拉窗,窗高1.55米,则活动窗扇的通风面积S(平方米)与拉开长度b(米)的关系式是 S=1.55 .【考点】列代数式.【分析】通风面积是拉开长度与窗高的乘积.【解答】解:活动窗扇的通风面积S米2)与拉开长度b(米)的关系是S=1.55b.故答案是:S=1.55.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系. 三、解答题(共50分)21.(6分)分解因式19\n(1)a3﹣ab2(2)a2+6ab+9b2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式a,进而利用平方差公式分解因式得出答案;(2)直接利用完全平方公式分解因式得出答案.【解答】解:(1)a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b);(2)a2+6ab+9b2=(a+3b)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键. 22.(8分)解方程:(1)(2).【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x﹣3+2x+6=12,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 23.(6分)先化简,再求值:(﹣)÷,其中x=3.19\n【考点】分式的化简求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x=3代入计算可得.【解答】解:原式=[﹣]•=•=,当x=3时,原式==3.【点评】本题主要考查分式的化简求值,熟练掌握分数的混合运算顺序和运算法则是解题的关键. 24.(6分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.【考点】作图-轴对称变换.【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可;(2)先求出三角形各边的长,得出这是一个直角三角形,再根据面积公式计算;(3)利用轴对称图形的性质可得.【解答】解:(1)如图(2)根据勾股定理得AC==,BC=,AB=,19\n再根据勾股定理可知此三角形为直角三角形,则s△ABC=;(3)根据轴对称图形的性质得:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).【点评】做轴对称图形的关键是找出各点的对应点,然后顺次连接. 25.(7分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.【考点】角平分线的性质.【分析】先利用HL判定Rt△PAB≌Rt△PAC,得出∠APB=∠APC,再利用SAS判定△PBD≌△PCD,从而得出BD=CD.【解答】证明:∵PB⊥BA,PC⊥CA,在Rt△PAB,Rt△PAC中,∵PB=PC,PA=PA,∴Rt△PAB≌Rt△PAC,∴∠APB=∠APC,又D是PA上一点,PD=PD,PB=PC,∴△PBD≌△PCD,∴BD=CD.【点评】19\n本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 26.(7分)如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据AB=DC,AC=BD可以联想到证明△ABC≌△DCB,可得∠DBC=∠ACB,从而根据平行线的性质证得∠1=∠2.【解答】证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.【点评】本题考查了全等三角形的判定和性质;由全等得对应角相等是一种很重要的方法,也是解决本题的关键. 27.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE.19\n【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据已知,利用SAS判定△ACF≌△ADF,从而得到对应角相等,再根据同位角相等两直线平行,得到DF∥BC;(2)已知DF∥BC,AC⊥BC,则GF⊥AC,再根据角平分线上的点到角两边的距离相等得到FG=EF.【解答】(1)证明:∵AF平分∠CAB,∴∠CAF=∠DAF.在△ACF和△ADF中,∵,∴△ACF≌△ADF(SAS).∴∠ACF=∠ADF.∵∠ACB=90°,CE⊥AB,∴∠ACE+∠CAE=90°,∠CAE+∠B=90°,∴∠ACF=∠B,∴∠ADF=∠B.∴DF∥BC.②证明:∵DF∥BC,BC⊥AC,∴FG⊥AC.∵FE⊥AB,又AF平分∠CAB,∴FG=FE.【点评】此题考查了学生以全等三角形的判定及平行线的判定的理解及掌握.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.19

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-07-31 19:00:09 页数:19
价格:¥3 大小:253.00 KB
文章作者:随遇而安

推荐特供

MORE