首页

22.3实际问题与二次函数(利润问题)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/10

2/10

3/10

4/10

剩余6页未读,查看更多内容需下载

实际问题与二次函数利润最大问题 利润问题一.几个量之间的关系.2.利润、售价、进价的关系:利润=售价-进价1.总价、单价、数量的关系:总价=单价×数量3.总利润、单件利润、数量的关系:总利润=单件利润×数量二.在商品销售中,采用哪些方法增加利润? 问题1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如果调整价格 ,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?列表分析1:总售价-总进价=总利润总售价=单件售价×数量总进价=单件进价×数量利润6000设每件涨价x元,则每件售价为(60+x)元(60+x)(300-10x)40(300-10x) 总利润=单件利润×数量列表分析2:总利润=单件利润×数量利润6000(60-40+x)(300-10x)请同学们继续完成. 问题2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?分析与思考:在这个问题中,总利润是不是一个变量?如果是,它随着哪个量的改变而改变?若设每件加价x元,总利润为y元。你能列出函数关系式吗? 解:设每件加价为x元时获得的总利润为y元.y=(60-40+x)(300-10x)=(20+x)(300-10x)=-10x2+100x+6000=-10(x2-50x-600)=-10[(x-25)2-625-600]=-10(x-25)2+12250当x=25时,y的最大值是12250.定价:60+25=85(元)(0<x≤30) 问题3.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出18件。如何定价才能使利润最大?在问题2中已经对涨价情况作了解答,定价为85元时利润最大.降价也是一种促销的手段.请你对问题中的降价情况作出解答. 若设每件降价x元时的总利润为y元y=(60-40-x)(300+18x)=(20-x)(300+18x)=-18x2+60x+6000答:综合以上两种情况,定价为85元可获得最大利润为12250元. 习题.某商店购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,据销售经验,售价每提高1元,销售量相应减少10个。(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是_______元,这种篮球每月的销售量是______个(用X的代数式表示) (2)8000元是否为每月销售篮球的最大利润?如果是,说明理由,如果不是,请求出最大利润,此时篮球的售价应定为多少元? 小结1.正确理解利润问题中几个量之间的关系2.当利润的值时已知的常数时,问题通过方程来解;当利润为变量时,问题通过函数关系来求解.作业

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2021-11-09 18:00:20 页数:10
价格:¥3 大小:1.68 MB
文章作者:138****1289

推荐特供

MORE