2024年高考数学一轮复习讲练测:一元函数的导数及其应用 第03讲 极值与最值(练习)(解析版)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
第03讲极值与最值(模拟精练+真题演练)1.(2023·广西南宁·武鸣县武鸣中学校考三模)函数的极小值点为( )A.B.C.D.【答案】D【解析】因为定义域为,所以,令得,令,得,所以在上单调递减,在上单调递增,所以函数在处取得极小值.故选:D2.(2023·辽宁葫芦岛·统考二模)已知函数,则( )A.有一个极值点B.有两个零点C.点(0,1)是曲线的对称中心D.直线是曲线的切线【答案】C【解析】由题,,令得或,令得,所以在,上单调递增,上单调递减,所以是极值点,故A错误;因,,,所以,函数在上有一个零点,
当时,,即函数在上无零点,综上所述,函数有一个零点,故B错误;令,该函数的定义域为,,则是奇函数,是的对称中心,将的图象向上移动一个单位得到的图象,所以点是曲线的对称中心,故C正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为,故D错误.故选:C.3.(2023·贵州贵阳·校联考模拟预测)若在和处有极值,则函数的单调递增区间是( )A.B.C.D.【答案】C【解析】因为,所以,由已知得,解得,所以,所以,由,解得,所以函数的单调递增区间是.故选:C.4.(2023·宁夏银川·六盘山高级中学校考一模)已知函数的极值点为,函数的最大值为,则( )A.B.C.D.【答案】A【解析】的定义域为,在上单调递增,且,,
所以,.的定义域为,由,当时,,当时,,故在处取得极大值,也是最大值,,即.所以.故选:A5.(2023·河北·校联考模拟预测)已知,则的取值范围为( )A.B.C.D.【答案】D【解析】∵∴原式令,则,当时,,在区间上单调递增,当时,,在区间上单调递减,又∵,,,∴当时,,∴当,的取值范围是.故选:D.6.(2023·广西南宁·南宁三中校考模拟预测)当时,函数取得最小值,则( )
A.B.C.D.【答案】C【解析】当时,函数取得最小值,所以,所以,得,又,根据函数在处取得最值,所以即得,所以,.故选:C.7.(2023·内蒙古阿拉善盟·统考一模)已知e是自然对数函数的底数,不等于1的两个正数m,t满足,且,则的最小值是( )A.B.C.D.【答案】B【解析】令,则,解出,或(舍),所以,即,,令,,,时,,时,,在上单调递减,在上单调递增,所以,故选:B.8.(2023·山东烟台·统考二模)若函数有两个极值点,且,则( )A.B.C.D.【答案】C【解析】因为函数有两个极值点,又函数的定义域为,导函数为,所以方程由两个不同的正根,且为其根,
所以,,,所以,则,又,即,可得,所以或(舍去),故选:C.9.(多选题)(2023·海南省直辖县级单位·校联考二模)函数的定义域为R,它的导函数的部分图象如图所示,则下面结论正确的是( )A.在上函数为增函数B.在上函数为增函数C.在上函数有极大值D.是函数在区间上的极小值点【答案】AC【解析】根据图象判断出的单调区间、极值(点).由图象可知在区间和上,递增;在区间上,递减.所以A选项正确,B选项错误.在区间上,有极大值为,C选项正确.在区间上,是的极小值点,D选项错误.故选:AC10.(多选题)(2023·广东汕头·统考三模)设函数的导函数为,则( )A.B.是函数的极值点C.存在两个零点D.在(1,+∞)上单调递增【答案】AD【解析】,所以函数在上单调递增,所以函数不存在极值点,故B错误,D正确;,故A正确;
,得,中,,所以恒成立,即方程只有一个实数根,即,故C错误.故选:AD11.(多选题)(2023·山西运城·统考三模)已知函数,则下列说法正确的是( )A.曲线在处的切线与直线垂直B.在上单调递增C.的极小值为D.在上的最小值为【答案】BC【解析】因为,所以,所以,故A错误;令,解得,所以的单调递增区间为,而,所以在上单调递增,故B正确;当时,所以的单调递减区间为,所以的极小值为,故C正确;在上单调递减,所以最小值为,故D错误;故选:BC12.(多选题)(2023·辽宁·校联考三模)已知函数,若有两个不同的极值点,且当时恒有,则的可能取值有( )A.B.C.D.【答案】BD【解析】由题可知,,因为有两个不同的极值点,所以且,若,则.当时,,即,即,即,设,则,所以在上单调递减,则,则
,所以.若,则.当时,,即,若,则当时,,不满足题意,所以,此时,即.设,则易得在上单调递减,在上单调递增,所以解得,所以.综上,的取值范围是,故选:BD.13.(2023·甘肃兰州·兰化一中校考模拟预测)函数在内有极小值,则的一个可能取值为______.【答案】(答案不唯一,只要符合均可)【解析】由得,若有极值点,则,所以,故当或时,,此时单调递增,当时,,此时单调递减,故当时,取极小值,因此要使在内有极小值,则,故答案为:(答案不唯一,只要符合均可)14.(2023·云南红河·统考二模)若是函数的极小值点,则函数在区间上的最大值为______.【答案】/【解析】由,得,因为是函数的极小值点,所以,即,即,解得或.当时,,
当或时,,当时,,所以,在区间,上单调递增,在上单调递减,所以是函数的极大值点,不符合题意;当时,,当或时,,当时,,所以在区间,上单调递增,在上单调递减,所以是函数的极小值点,是函数的极大值点,故又因为,,所以函数在的最大值为.故答案为:.15.(2023·河南·校联考模拟预测)已知函数,,若与中恰有一个函数无极值,则的取值范围是______.【答案】【解析】若无极值,则恒成立,即,解得;若无极值,则对恒成立,所以,即.所以与中恰有一个函数无极值,则或,
解得.16.(2023·湖南·校联考模拟预测)已知函数,对于任意,都有,则实数的取值范围为______.【答案】【解析】当时,,符合题意;当时,令,则,可化为,令,则,时,单调递减,时,单调递增,所以的最小值为,对于任意,都有,等价于,即,对于①:由在上单调递增,且,可知,即且,在且的条件下,对②:由时,单调递减,可得,②成立,综上可知:实数的取值范围为.故答案为:17.(2023·陕西宝鸡·统考二模)已知函数,且f(x)在内有两个极值点().(1)求实数a的取值范围;(2)求证:.【解析】(1)由题可知,,令,即,即有两个根,令,则,
由得,,解得;由得,,解得,所以在单调递增,单调递减,时,所以要使有两个根,则,解得,所以.(2)由(1)可知且,所以要证,只用证,等价于证明,而,即,故等价于证明,即证.令,则,于是等价于证明成立,设,,所以在上单调递增,故,即成立,所以,结论得证.18.(2023·宁夏石嘴山·平罗中学校考模拟预测)已知函数.(1)求的极值;(2)若恒成立,求的取值范围.【解析】(1)由得,
令,故在单调递增,令,故在单调递减,故当时,取极小值,且极小值为,故极大值,(2)由恒成立可得恒成立,记,则,令,则,由(1)知:在处取极小值也是最小值,且最小值为1,故,因此在上单调递增,且,故当时,,单调递增,当时,,单调递减,故当时,取极小值也是最小值1,故19.(2023·全国·模拟预测)已知函数.(1)若曲线在处的切线与直线相互垂直,探究函数的单调性;(2)若函数有唯一的极值0,求的值.【解析】(1)依题意,,故,解得,则,故,则,故当时,,当时,,故函数在上单调递增,在上单调递减,故,故,则函数在上单调递减;(2),则,设唯一的极值点为,则由得,,(*)令,则,所以,记,则,所以在上单调递增,即在上单调递增,且,所以当时,,从而单调递减,当时,,从而单调递增,
故,从而在上单调递增,又因为,所以,代入①可得,当时,,,因为是(*)的唯一零点,且,所以是唯一的极值点,且极值为0,满足题意.所以.20.(2023·四川成都·三模)已知函数,其中.(1)当时,求曲线在点处的切线方程;(2)若是函数的极小值点,求的取值范围.【解析】(1)当时,函数... ∴曲线在点处的切线方程为.(2)由题知,不妨设.. (i)当时,不妨设.在上恒成立.在上单调递增. 又,∴当时,;当时,. ,.∴当时,,即在上单调递减;当时,,即在上单调递增.是函数的极小值点. (ii)当时,不妨设.
,使得,且.在上单调递减. ∴当时,.∴当时,.在上单调递减. 不是函数的极小值点.综上所述,当是函数的极小值点时,的取值范围为.21.(2023·北京房山·统考二模)已知函数.(1)求曲线在处的切线方程;(2)当时,求函数的最小值;(3)证明:【解析】(1).所以,,所以在点处切线的方程为,即.(2)当时,,,令,则.当时,,所以在单调递减.所以.所以,函数在上单调递减.函数在上单调递减.所以,即函数的最小值为.(3)由(2)可知在上单调递减.又因为,所以.
所以,即22.(2023·陕西西安·长安一中校考二模)已知.(1)求在处的切线方程;(2)若,记为函数g(x)的两个极值点,求的取值范围.【解析】(1),又切点切线方程为,即.(2)为两个极值点,有两个不等的正根,,,得,令,得,,,则,则,在递减,,即的取值范围为.1.(2017·全国·高考真题)若是函数的极值点,则的极小值为.A.B.C.D.【答案】A【解析】由题可得,因为,所以,,故,令,解得或,所以在上单调递增,在上单调递减,
所以的极小值为,故选A.2.(2012·重庆·高考真题)设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值【答案】D【解析】则函数增;则函数减;则函数减;则函数增;选D.3.(2013·浙江·高考真题)已知e为自然对数的底数,设函数,则.A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】
当k=1时,函数f(x)=(ex−1)(x−1).求导函数可得f′(x)=ex(x−1)+(ex−1)=(xex−1)f′(1)=e−1≠0,f′(2)=2e2−1≠0,则f(x)在x=1处与在x=2处均取不到极值,当k=2时,函数f(x)=(ex−1)(x−1)2.求导函数可得f′(x)=ex(x−1)2+2(ex−1)(x−1)=(x−1)(xex+ex−2)∴当x=1,f′(x)=0,且当x>1时,f′(x)>0,当x0<x<1时(x0为极大值点),f′(x)<0,故函数f(x)在(1,+∞)上是增函数;在(x0,1)上是减函数,从而函数f(x)在x=1取得极小值.对照选项.故选C.4.(2022·全国·统考高考真题)已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________.【答案】【解析】[方法一]:【最优解】转化法,零点的问题转为函数图象的交点因为,所以方程的两个根为,即方程的两个根为,即函数与函数的图象有两个不同的交点,因为分别是函数的极小值点和极大值点,所以函数在和上递减,在上递增,所以当时,,即图象在上方当时,,即图象在下方,图象显然不符合题意,所以.令,则,设过原点且与函数的图象相切的直线的切点为,
则切线的斜率为,故切线方程为,则有,解得,则切线的斜率为,因为函数与函数的图象有两个不同的交点,所以,解得,又,所以,综上所述,的取值范围为.[方法二]:【通性通法】构造新函数,二次求导=0的两个根为因为分别是函数的极小值点和极大值点,所以函数在和上递减,在上递增,设函数,则,若,则在上单调递增,此时若,则在上单调递减,在上单调递增,此时若有和分别是函数且的极小值点和极大值点,则,不符合题意;若,则在上单调递减,此时若,则在上单调递增,在上单调递减,令,则,此时若有和分别是函数且的极小值点和极大值点,且,则需满足,,即故,所以.【整体点评】法一:利用函数的零点与两函数图象交点的关系,由数形结合解出,突出“小题小做”,是该题的最优解;
法二:通过构造新函数,多次求导判断单调性,根据极值点的大小关系得出不等式,解出即可,该法属于通性通法.5.(2021·全国·统考高考真题)函数的最小值为______.【答案】1【解析】由题设知:定义域为,∴当时,,此时单调递减;当时,,有,此时单调递减;当时,,有,此时单调递增;又在各分段的界点处连续,∴综上有:时,单调递减,时,单调递增;∴故答案为:1.6.(2018·全国·高考真题)已知函数,则的最小值是_____________.【答案】【解析】[方法一]:【通性通法】导数法.令,得,即在区间内单调递增;令,得,即在区间内单调递减.则.故答案为:.[方法二]:三元基本不等式的应用因为,所以.
当且仅当,即时,取等号.根据可知,是奇函数,于是,此时.故答案为:.[方法三]:升幂公式+多元基本不等式,,当且仅当,即时,.根据可知,是奇函数,于是.故答案为:.[方法四]:化同角+多元基本不等式+放缩,当且仅当时等号成立.故答案为:.[方法五]:万能公式+换元+导数求最值设,则可化为,
当时,;当时,,对分母求导后易知,当时,有最小值.故答案为:.[方法六]:配方法,当且仅当即时,取最小值.故答案为:.[方法七]:【最优解】周期性应用+导数法因为,所以,即函数的一个周期为,因此时,的最小值即为函数的最小值.当时,,当时,因为,令,解得或,由,,,所以的最小值为.故答案为:.【整体点评】方法一:直接利用导数判断函数的单调性,得出极值点,从而求出最小值,是求最值的通性通法;方法二:通过对函数平方,创造三元基本不等式的使用条件,从而解出;方法三:基本原理同方法三,通过化同角利用多元基本不等式求解,难度较高;方法四:通过化同角以及化同名函数,放缩,再结合多元基本不等式求解,难度较高;方法五:通过万能公式化简换元,再利用导数求出最值,该法也较为常规;
方法六:通过配方,将函数转化成平方和的形式,构思巧妙;方法七:利用函数的周期性,缩小函数的研究范围,再利用闭区间上的最值求法解出,解法常规,是该题的最优解.7.(2021·天津·统考高考真题)已知,函数.(I)求曲线在点处的切线方程:(II)证明存在唯一的极值点(III)若存在a,使得对任意成立,求实数b的取值范围.【解析】(I),则,又,则切线方程为;(II)令,则,令,则,当时,,单调递减;当时,,单调递增,当时,,,当时,,画出大致图像如下:所以当时,与仅有一个交点,令,则,且,当时,,则,单调递增,当时,,则,单调递减,为的极大值点,故存在唯一的极值点;(III)由(II)知,此时,所以,令,若存在a,使得对任意成立,等价于存在,使得,即,,,当时,,单调递减,当时,,单调递增,所以,故,
所以实数b的取值范围.8.(2021·北京·统考高考真题)已知函数.(1)若,求曲线在点处的切线方程;(2)若在处取得极值,求的单调区间,以及其最大值与最小值.【解析】(1)当时,,则,,,此时,曲线在点处的切线方程为,即;(2)因为,则,由题意可得,解得,故,,列表如下:增极大值减极小值增所以,函数的增区间为、,单调递减区间为.当时,;当时,.所以,,.9.(2021·全国·统考高考真题)设函数,已知是函数的极值点.(1)求a;(2)设函数.证明:.【解析】(1)由,,又是函数的极值点,所以,解得;(2)[方法一]:转化为有分母的函数由(Ⅰ)知,,其定义域为.
要证,即证,即证.(ⅰ)当时,,,即证.令,因为,所以在区间内为增函数,所以.(ⅱ)当时,,,即证,由(ⅰ)分析知在区间内为减函数,所以.综合(ⅰ)(ⅱ)有.[方法二]【最优解】:转化为无分母函数由(1)得,,且,当时,要证,,,即证,化简得;同理,当时,要证,,,即证,化简得;令,再令,则,,令,,当时,,单减,故;当时,,单增,故;综上所述,在恒成立.[方法三]:利用导数不等式中的常见结论证明令,因为,所以在区间内是增函数,在区间内是减函数,所以,即(当且仅当时取等号).故当且时,且,,即,所以.(ⅰ)当时,,所以,即,所以.(ⅱ)当时,,同理可证得.
综合(ⅰ)(ⅱ)得,当且时,,即.【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当时,转化为证明,当时,转化为证明,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当时,成立和当时,成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数,利用导数分析单调性,证得常见常用结论(当且仅当时取等号).然后换元得到,分类讨论,利用不等式的基本性质证得要证得不等式,有一定的巧合性.
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)