首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2024年高考数学一轮复习讲练测:三角函数、解三角形 第02讲 三角恒等变换(练习)(解析版)
2024年高考数学一轮复习讲练测:三角函数、解三角形 第02讲 三角恒等变换(练习)(解析版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/15
2
/15
剩余13页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第02讲三角恒等变换(模拟精练+真题演练)1.(2023·河南开封·统考三模)已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边经过点,则( )A.B.C.D.【答案】B【解析】由题意得,所以.故选:B.2.(2023·河南·襄城高中校联考三模)已知,,则( )A.B.C.D.【答案】B【解析】由题意得,,因为,所以,所以,即,所以.故选:B3.(2023·广东深圳·校考二模)已知,则的值是( )A.B.2C.D.【答案】D【解析】由,则.15 故选:D4.(2023·宁夏石嘴山·平罗中学校考模拟预测)若,则( )A.B.C.D.【答案】A【解析】因为,所以.故选:A.5.(2023·福建厦门·统考模拟预测)已知,则( )A.0B.C.D.【答案】A【解析】,,又,则,则故选:A6.(2023·吉林延边·统考二模)下列化简不正确的是( )A.B.C.D.【答案】D【解析】A选项,15 ,所以A选项正确.B选项,,B选项正确.C选项,,C选项正确.D选项,,D选项错误.故选:D7.(2023·江西上饶·统考二模)已知,则( )A.B.C.D.【答案】B【解析】已知,则,.则.故选:B.8.(2023·湖南长沙·雅礼中学校考模拟预测)已知,,则( )A.4B.6C.D.【答案】D【解析】由得,进而可得,所以,故选:D9.(多选题)(2023·广东广州·广州六中校考三模)若函数,则( )A.函数的一条对称轴为15 B.函数的一个对称中心为C.函数的最小正周期为D.若函数,则的最大值为2【答案】ACD【解析】由题意得,.A:当时,,又,所以是函数的一条对称轴,故A正确;B:由选项A分析可知,所以点不是函数的对称点,故B错误;C:由,知函数的最小正周期为,故C正确;D:,所以,故D正确.故选:ACD.10.(多选题)(2023·全国·模拟预测)若,,则( )A.B.C.D.【答案】BCD【解析】选项A:由,,可知为锐角,且,解得,且,所以,故A错误;选项B:因为,,因此,故B正确;选项C:因为且.所以,所以C正确;15 选项D:因为,,所以,,所以,所以D正确.故选:BCD11.(多选题)(2023·安徽黄山·统考二模)若,则的值可能是( )A.B.C.2D.3【答案】CD【解析】由余弦的二倍角公式知,得到,即,解得或,当时,,当时,所以,当时,或,当时,或,故选:CD.12.(多选题)(2023·湖南邵阳·统考二模)若函数的最小正周期为,则( )A.B.在上单调递增C.在内有5个零点D.在上的值域为【答案】BC【解析】.15 由最小正周期为,可得,故,对于A,,故A错误;对于B,当时,,此时单调递增,故B正确;对于C,令,所以或,当时,满足要求的有故有5个零点,故C正确;对于D, 当时,,则故,所以D错误.故选:BC.13.(2023·海南海口·海南华侨中学校考模拟预测)已知,则______.【答案】/【解析】因为,解得,所以.故答案为:14.(2023·河南·襄城高中校联考三模)若,则__________.【答案】/0.75【解析】,即,得,所以.15 故答案为:.15.(2023·河南·襄城高中校联考三模)若,则______.【答案】/【解析】因为,所以,故.故答案为:.16.(2023·安徽合肥·合肥一中校考模拟预测)已知a,b都是锐角,,则=___________.【答案】2【解析】法1:.,.法2:由,令,则,则,故答案为:217.(2023·天津滨海新·统考三模)在中,内角,,所对的边分别为,,,,,.(1)求的值;15 (2)求的值;(3)求的值.【解析】(1)由余弦定理知,,所以,即, 解得或(舍负),所以.(2)由正弦定理知,,所以,所以.(3)由余弦定理知,, 所以,, 所以.18.(2023·天津和平·耀华中学校考一模)已知,.(1)求的大小;(2)设函数,,求的单调区间及值域.【解析】(1)由得,则,因为,所以,所以,解得,即,又,15 所以,则.(2)函数,,令,解得,所以函数在区间上单调递增;令,解得,所以函数在区间上单调递减;因为,,当时,即,取最大值1;当时,即,取最小值.所以值域为.19.(2023·北京海淀·统考二模)已知函数,且.(1)求的值和的最小正周期;(2)求在上的单调递增区间.【解析】(1)因为,且,所以,解得,所以,即,所以的最小正周期;(2)由,,解得,,所以的单调递增区间为,,当时的单调递增区间为,当时的单调递增区间为,15 所以在上的单调递增区间为,.1.(2021•全国)函数图像的对称轴是 A.B.C.D.【答案】【解析】.由,,得,.函数图像的对称轴是.故选:.2.(2021•甲卷)若,,则 A.B.C.D.【答案】【解析】由,得,即,,,则,解得,则,.15 故选:.3.(2021•乙卷) A.B.C.D.【答案】【解析】法一、.法二、.故选:.4.(2020•新课标Ⅲ)已知,则 A.B.C.1D.2【答案】【解析】由,得,即,得,即,即,则,故选:.5.(2020•新课标Ⅲ)已知,则 A.B.C.D.15 【答案】【解析】,,即,得,即,得故选:.6.(2020•新课标Ⅰ)已知,且,则 A.B.C.D.【答案】【解析】由,得,即,解得(舍去),或.,,,则.故选:.7.(2022•浙江)若,,则 , .【答案】;.【解析】,,,,,,15 解得,,.故答案为:;.8.(2022•北京)若函数的一个零点为,则 ; .【答案】1;.【解析】函数的一个零点为,,,函数,,故答案为:1;.9.(2020•江苏)已知,则的值是 .【答案】.【解析】因为,则,解得,故答案为:10.(2020•浙江)已知,则 , .【答案】;.【解析】,则..故答案为:;.15 11.(2021•浙江)设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在,上的最大值.【解析】函数,(Ⅰ)函数,则最小正周期为;(Ⅱ)函数,因为,所以,所以当,即时,.15 15
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
广东省高考数学第二轮复习 专题三 三角函数及解三角形第2讲 三角恒等变换及解三角形 理
安徽省高考数学第二轮复习 专题三 三角函数及解三角形第2讲 三角恒等变换及解三角形 文
全国统考2023版高考数学大一轮复习第4章三角函数解三角形第2讲三角恒等变换2备考试题文含解析20230327152
全国统考2023版高考数学大一轮复习第4章三角函数解三角形第2讲三角恒等变换1备考试题文含解析20230327151
全国版2023高考数学一轮复习第4章三角函数解三角形第2讲三角恒等变换试题2理含解析20230316160
全国版2023高考数学一轮复习第4章三角函数解三角形第2讲三角恒等变换试题1理含解析20230316159
2023高考数学二轮复习专题练三核心热点突破专题一三角函数与解三角形第2讲三角恒等变换与解三角形含解析202303112189
2024年高考数学一轮复习讲练测:三角函数、解三角形 第01讲 三角函数的概念与诱导公式(八大题型)(讲义)(解析版)
2024年高考数学一轮复习讲练测:三角函数、解三角形 第01讲 三角函数的概念与诱导公式(练习)(解析版)
2024年高考数学一轮复习讲练测:三角函数、解三角形 第01讲 三角函数的概念与诱导公式(练习)(原卷版)
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2024-09-09 00:00:01
页数:15
价格:¥1
大小:851.45 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划