2024年高考数学一轮复习讲练测(新教材新高考)第04讲 基本不等式及其应用(课件)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/35
2/35
3/35
4/35
剩余31页未读,查看更多内容需下载
第04讲基本不等式及其应用导师:稻壳儿高考一轮复习讲练测2024,01020304目录CONTENTS考情分析网络构建知识梳理题型归纳真题感悟,,01PARTONE考情分析,稿定PPT稿定PPT,海量素材持续更新,上千款模板选择总有一款适合你02考点要求考题统计考情分析(1)了解基本不等式的推导过程.(2)会用基本不等式解决简单的最值问题.(3)理解基本不等式在实际问题中的应用.2022年II卷第12题,5分2021年乙卷第8题,5分2020年天津卷第14题,5分高考对基本不等式的考查比较稳定,考查内容、频率、题型难度均变化不大,应适当关注利用基本不等式大小判断、求最值和求取值范围的问题.,02PARTONE网络构建,,03PARTONE知识梳理题型归纳,1.基本不等式:(1)基本不等式成立的条件:.(2)等号成立的条件:当且仅当时,等号成立.(3)其中叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.a>0,b>0a=b,2.几个重要的不等式(1)a2+b2≥(a,b∈R).(2)≥(a,b同号).(3)ab≤(a,b∈R).(4)≥(a,b∈R).以上不等式等号成立的条件均为a=b.2ab2,3.利用基本不等式求最值(1)如果(定值),则(当且仅当“”时取“=”).即“和为定值,积有最大值”.(2)如果(定值),则(当且仅当“”时取“=”).即积为定值,和有最小值”.注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.,常见求最值模型模型一:,当且仅当时等号成立;模型二:,当且仅当时等号成立;模型三:,当且仅当时等号成立;模型四:,当且仅当时等号成立.,【例1】(2023·辽宁·校联考二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形中,点O为斜边AB的中点,点D为斜边AB上异于顶点的一个动点,设,,用该图形能证明的不等式为().A.B.C.D.【答案】C【解析】由图知:,在中,,所以,即,故选:C题型一:基本不等式及其应用,【对点训练1】(2023·江苏·高三专题练习)下列运用基本不等式求最值,使用正确的个数是()已知,求的最小值;解答过程:;求函数的最小值;解答过程:可化得;设,求的最小值;解答过程:,当且仅当即时等号成立,把代入得最小值为4.A.0个B.1个C.2个D.3个A题型一:基本不等式及其应用【解题方法总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.,【例2】(2023·河北·高三学业考试)若,,且,则的最大值为______.【答案】【解析】由题知,,,且因为,所以,所以,即,当且仅当,即时,取等号,故答案为:题型二:直接法求最值,【对点训练2】(2023·重庆沙坪坝·高三重庆南开中学校考阶段练习)若,,且,则的最小值是____________.题型二:直接法求最值【解题方法总结】直接利用基本不等式求解,注意取等条件.,【例3】(2023·全国·高三专题练习)若,则的最小值为___________.【答案】0【解析】由,得,所以,当且仅当即时等号成立.故答案为:0题型三:常规凑配法求最值,【对点训练3】(2023·全国·高三专题练习)已知,则的最小值为__________.3题型三:常规凑配法求最值【解题方法总结】1、通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.2、注意验证取得条件.,【例4】(2023·全国·高三专题练习)已知正实数a,b满足,则的最小值是( )A.2B.C.D.6【答案】B【解析】由,得,所以,当且仅当,即取等号.故选:B.题型四:消参法求最值,【对点训练4】(2023·全国·高三专题练习)若,,则的最小值为___________.题型四:消参法求最值【解题方法总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!,【例5】(2023·浙江省江山中学高三期中)设,,若,则的最大值为()A.B.C.D.【答案】D【解析】解:法一:(基本不等式)设,则,条件,所以,即.故选:D.法二:(三角换元)由条件,故可设,即,由于,,故,解得所以,,所以,当且仅当时取等号.故选:D.题型五:双换元求最值,【对点训练5】(2023·天津南开·一模)若,,,,则的最小值为______.题型五:双换元求最值【解题方法总结】若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系.1、代换变量,统一变量再处理.2、注意验证取得条件.,【例6】(2023·安徽蚌埠·统考二模)若直线过点,则的最小值为______.【答案】【解析】∵直线过点,.,当且仅当,即,时取等号.的最小值为.故答案为:.题型六:“1”的代换求最值,【对点训练6】(2023·河北·高三校联考阶段练习)已知,则的最小值为__________.题型六:“1”的代换求最值【解题方法总结】1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.1、根据条件,凑出“1”,利用乘“1”法.2、注意验证取得条件.,【例7】(2023·全国·高三专题练习)已知正实数a,b,c,,则的最小值为_______________.【答案】【解析】由正实数a,b,,可得,所以而,当且仅当即时取等号,故,当且仅当时,即时取等号,故答案为:题型七:齐次化求最值,【对点训练7】(2023·全国·高三专题练习)已知a,b为正实数,且,则的最小值为______.6题型七:齐次化求最值【解题方法总结】齐次化就是含有多元的问题,通过分子、分母同时除以得到一个整体,然后转化为运用基本不等式进行求解.,【例8】(2023·全国·高三专题练习)利用基本不等式证明:已知都是正数,求证:【解析】都是正数,(当且仅当时取等号);(当且仅当时取等号);(当且仅当时取等号);(当且仅当时取等号),即.题型八:利用基本不等式证明不等式,【对点训练8】(2023·河南·高三校联考阶段练习)已知x,y,z为正数,证明:(1)若,则;(2)若,则.【解析】(1)因为,所以,同理可得,,所以,故,当且仅当时等号成立.(2),因为,所以,当且仅当时等号成立.题型八:利用基本不等式证明不等式【解题方法总结】类似于基本不等式的结构的不等式的证明可以利用基本不等式去组合、分解、运算获得证明.,【例9】(2023·全国·高三专题练习)首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为,且处理每吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解析】(1)由题意知,平均每吨二氧化碳的处理成本为;当且仅当,即时等号成立,故该当每月处理量为400吨时,才能使每吨的平均处理成本最低为200元.(2)不获利,设该单位每个月获利为S元,则,因为,则,故该当单位每月不获利,需要国家每个月至少补贴40000元才能不亏损.题型九:利用基本不等式解决实际问题,【对点训练9】(2023·贵州安顺·高一统考期末)某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为100吨,最多为600吨,月处理成本(元)与月处理量x(吨)之间的函数关系可近似地表示为.(1)该单位每月处理量为多少吨时,才能使月处理成本最低?月处理成本最低是多少元?(2)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?每吨的平均处理成本最低是多少元?【解析】(1)该单位每月的月处理成本:,因,函数在区间上单调递减,在区间上单调递增,从而得当时,函数取得最小值,即.所以该单位每月处理量为200吨时,才能使月处理成本最低,月处理成本最低是60000元.(2)由题意可知:,每吨二氧化碳的平均处理成本为:当且仅当,即时,等号成立.所以该单位每月处理量为400吨时,每吨的平均处理成本最低,为200元.题型九:利用基本不等式解决实际问题【解题方法总结】1、理解题意,设出变量,建立函数模型,把实际问题抽象为函数的最值问题.2、注意定义域,验证取得条件.3、注意实际问题隐藏的条件,比如整数,单位换算等.,【例10】(多选题)(2023·重庆·统考模拟预测)若实数,满足,则()A.B.C.D.【答案】BC【解析】,当时,,当且仅当或时等号成立,得,当时,,当且仅当或时等号成立,得,当时,由可得或综合可得,故C正确,D错误;,当时,,故A错误,B正确;故选:BC.题型十:与
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)