首页

2024届高考数学一轮复习(新教材人教A版强基版)第十章计数原理、概率、随机变量及其分布必刷小题19计数原理与概率课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/39

2/39

3/39

4/39

剩余35页未读,查看更多内容需下载

必刷小题19计数原理与概率第十章计数原理、概率、随机变量及其分布 一、单项选择题1.某市场一摊位的卖菜员发现顾客来此摊位买菜后选择只用现金支付的概率为0.2,选择既用现金支付又用非现金支付的概率为0.1,且买菜后无赊账行为,则选择只用非现金支付的概率为A.0.5B.0.6C.0.7D.0.812345678910111213141516√ 设事件A为“只用现金支付”,事件B为“只用非现金支付”,事件C为“既用现金支付又用非现金支付”,事件D为“买菜后支付”,则P(D)=P(A)+P(B)+P(C)=1,因为P(A)=0.2,P(C)=0.1,所以P(B)=0.7.12345678910111213141516 组成的所有两位数有12,14,16,21,24,26,41,42,46,61,62,64,共12个,其中是4的倍数的两位数有12,16,24,64,共4个,2.从1,2,4,6这四个数字中随机地抽取两个不同的数字组成一个两位数,则组成的两位数是4的倍数的概率为√12345678910111213141516 3.飞沫传播是呼吸系统疾病传播的主要途径,已知患者通过飞沫传播被感染的概率为假设甲、乙两患者是否通过飞沫传播被感染相互独立,则甲、乙两患者至少有一人是通过飞沫传播被感染的概率为√12345678910111213141516 12345678910111213141516 4.(2022·新余模拟)在的展开式中,所有二项式系数和为64,则该展开式中常数项为A.90B.135C.-90D.-13512345678910111213141516√ 则2n=64,解得n=6,12345678910111213141516 5.从1,2,3,4,5中不放回地抽取2个数,则在第1次抽到偶数的条件下,第2次抽到奇数的概率是12345678910111213141516√ 设事件Ai为“第i次抽到偶数”,i=1,2,12345678910111213141516则在第1次抽到偶数的条件下, 6.(2023·大庆模拟)重庆九宫格火锅,是重庆火锅独特的烹饪方式.九宫格下面是相通的,实现了“底同火不同,汤通油不通”.它把火锅分为三个层次,不同的格子代表不同的温度和不同的牛油浓度.其锅具抽象成数学形状如图(同一类格子形状相同):“中间格”火力旺盛,不宜久煮,适合放一些质地嫩脆、顷刻即熟的食物;“十字格”火力稍弱,但火力均匀,适合煮食,长时间加热可以锁住食材原香;“四角格”属文火,火力温和,适合焖菜,让食物软糯入味.12345678910111213141516 现有6种不同食物(足够量),其中1种适合放入中间格,3种适合放入十字格,2种适合放入四角格.现将九宫格全部放入食物,且每格只放一种,若同时可以吃到这六种食物(不考虑位置),则不同的放法种数为A.108B.36C.9D.612345678910111213141516√ 根据题意,6种不同食物中,有1种适合放入中间格,则中间格有1种放法,十字格有四个位置,有3种适合放入十字格,所以有一种放两个位置,共有3种放法,四角格有4个位置,有2种适合放入四角格,可分为一种放三个位置,一种放一个位置,有两种放法,或每种均放两个位置,有一种放法,则四角格有3种放法,则有1×3×3=9(种)不同放法.12345678910111213141516 A.8B.12C.16D.20√7.小小的火柴棒可以拼成几何图形,也可以拼成数字.如图所示,我们可以用火柴棒拼出1至9这9个数字.比如:“1”需要2根火柴棒,“7”需要3根火柴棒.若用8根火柴棒以适当的方式全部放入表格中(没有放入火柴棒的空位表示数字“0”),那么最多可以表示无重复数字的三位数的个数为12345678910111213141516 由题意,可以用2根火柴棒表示数字1;3根火柴棒表示数字7;4根火柴棒表示数字4;5根火柴棒表示数字2,3,5;6根火柴棒表示数字6,9;7根火柴棒表示数字8.数字不重复,因此8根火柴棒只能分成两组:2和6,3和5,组成两个数字,还有一个数字只能为0,12345678910111213141516 8.西安是世界四大古都之一,历史上先后有十多个王朝在西安建都.图为唐长安城(西安古称)示意图,城中南北向共有9条街道,东西向有12条街道,被称为“九衢十二条”,整齐的街道把唐长安城划分成了108坊,各坊有坊墙包围.下列说法错误的是12345678910111213141516 A.从延平门进城到安化门出城,最近的不同路线共有15条B.甲、乙两人从安化门、明德门、启夏门这三个城门中随机选一城门进城,若两人的选择互不影响,则两人从同一城门进城的概率为C.用四种不同的颜色给长乐、永福、大宁、兴宁四坊染色(街道忽略),要求有公共边的两个区域不能用同一种颜色,共有60种不同的染色方法D.若将街道看成直线,则图中矩形ABCD区域中共有不同矩形150个12345678910111213141516√ A项,如图1所示,从延平门到安化门,最近的路线是从图1中点M到点N,只能横向往右走纵向往下走,所以共有=15(条),故A正确;B项,甲、乙两人从安化门、明德门、启夏门这三个城门中随机选一城门进城,因为两人的选择互不影响,所以两人进城共有9种不同的情况,两人从相同城门进城有3种情况,所以两人从同一城门进城的概率为故B正确;12345678910111213141516 C项,如图2所示,用四种不同的颜色给长乐、永福、大宁、兴宁四坊染色,若四个位置颜色各不相同,则有=24(种)染色方法,若1与4颜色相同,则有=24(种)染色方法,若2与3颜色相同,则有=24(种)染色方法,若1与4颜色相同且2与3颜色相同,则有=12(种)染色方法,综上,共有84种染色方法,故C错误;12345678910111213141516 D项,若将街道看成直线,则在矩形ABCD区域网格的5条横线中任取两条,6条竖线中任取两条,即可围出一个矩形,所以共有=150(个)不同的矩形,故D正确.12345678910111213141516 二、多项选择题9.分别抛掷两枚质地均匀的骰子(六个面上的点数分别为1,2,3,4,5,6),设事件M=“第一枚骰子的点数为奇数”,事件N=“第二枚骰子的点数为偶数”,则12345678910111213141516√√ 对于A,事件M与N是可能同时发生的,故M与N不互斥,故A不正确;12345678910111213141516对于C,事件M发生与否对事件N发生的概率没有影响,M与N相互独立,故C正确; 10.已知(x-3)8=a0+a1(x-2)+a2(x-2)2+…+a8(x-2)8,则下列结论正确的有A.a0=1B.a6=-28D.a0+a2+a4+a6+a8=12812345678910111213141516√√√ 对于A,取x=2,得a0=1,A正确;12345678910111213141516即a6=28,B不正确; 对于D,取x=3,得a0+a1+a2+a3+…+a7+a8=0,取x=1,得a0-a1+a2-a3+…-a7+a8=(-2)8=256,两式相加得2(a0+a2+a4+a6+a8)=256,即a0+a2+a4+a6+a8=128,D正确.12345678910111213141516 √11.假定生男孩和生女孩是等可能的,现考虑有3个小孩的家庭,随机选择一个家庭,则下列说法正确的是A.事件“该家庭3个小孩中至少有1个女孩”和事件“该家庭3个小孩中至少有1个男孩”是互斥事件B.事件“该家庭3个小孩都是男孩”和事件“该家庭3个小孩都是女孩”是对立事件12345678910111213141516√ 对于A,事件“该家庭3个小孩中至少有1个女孩”和事件“该家庭3个小孩中至少有1个男孩”能同时发生,不是互斥事件,故A错误;对于B,事件“该家庭3个小孩都是男孩”和事件“该家庭3个小孩都是女孩”不能同时发生,能同时不发生,是互斥但不对立事件,故B错误;对于C,有3个小孩的家庭包含的样本点有8个,分别为(男男男),(男男女),(男女男),(女男男),(男女女),(女男女),(女女男),(女女女),12345678910111213141516 该家庭3个小孩中只有1个男孩包含的样本点有3个,12345678910111213141516对于D,已知该家庭3个小孩中有男孩的条件下,样本点有7个,分别为(男男男),(男男女),(男女男),(女男男),(男女女),(女男女),(女女男),3个小孩中至少有2个男孩包含的样本点有4个, 12.(2023·合肥质检)有3台车床加工同一型号的零件.第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床的零件数分别占总数的25%,30%,45%,则下列选项正确的有A.任取一个零件是第1台生产出来的次品概率为0.06B.任取一个零件是次品的概率为0.052512345678910111213141516√√ 记Ai为事件“零件为第i(i=1,2,3)台车床加工”,记B为事件“任取一个零件为次品”,则P(A1)=0.25,P(A2)=0.3,P(A3)=0.45,对于A,即P(A1B)=P(A1)·P(B|A1)=0.25×0.06=0.015,A错误;对于B,P(B)=P(A1)·P(B|A1)+P(A2)·P(B|A2)+P(A3)·P(B|A3)=0.25×0.06+0.3×0.05+0.45×0.05=0.0525,B正确;12345678910111213141516 12345678910111213141516 三、填空题13.盒子中装有编号为0,1,2,3,4的五个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_____.12345678910111213141516 从编号为0,1,2,3,4的五个球中任取两个球的所有样本点为(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共10个,其中两个球的编号之积为偶数的样本点有(0,1),(0,2),(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4),共9个,12345678910111213141516 12345678910111213141516令3-k=2,得k=1, 根据题意,分2种情况讨论:15.(2023·长春模拟)将A,B,C,D,E这5名学生从左至右排成一排,则满足“A与B相邻且A与C之间恰好有1名学生”的不同排列方法有____种.20综上,所有排列方法为12+8=20(种).12345678910111213141516 16.用标有1克、2克、4克的砝码各一个,在某架无刻度的天平上称量重物,如果天平两端均可放置砝码,那么该天平所能称出的不同克数(正整数)至多有______种;若再增加15克、40克的砝码各一个,所能称出的不同克数(正整数)至多有______种.12345678910111213141516762 当一边放砝码时:一个砝码时,能称出1克、2克、4克,两个砝码时能称出3克、5克、6克,三个砝码时能称出7克,共有7种情况;当两边都放砝码时:一边各放一个砝码时,则能称出4-2=2(克),2-1=1(克),4-1=3(克),共三种情况;一边两个,另一边一个有4-(2+1)=1(克),2+4-1=5(克),4+1-2=3(克),共三种情况,综上所述,该天平所能称出的不同克数(正整数)至多有7种.12345678910111213141516 若用1克、2克、4克的砝码,可称量范围1≤x≤7,若加入15克后,可称量的范围15-7≤x≤15+7,即8≤x≤22,若加入40克后,可称量的范围40-7≤x≤40+7,即33≤x≤47,也可称量40+8≤x≤40+22,即48≤x≤62,也可称量40-22≤x≤40+8,即18≤x≤48,则可称量的范围有1≤x≤7,8≤x≤22,18≤x≤48,33≤x≤47,48≤x≤62,x为正整数,即1≤x≤62,12345678910111213141516 所以再增加15克、40克的砝码各一个,所能称出的不同克数(正整数)至多有62种.12345678910111213141516

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

其他相关资源

文档下载

发布时间:2023-09-13 06:20:02 页数:39
价格:¥2 大小:1.70 MB
文章作者:随遇而安

推荐特供

MORE