首页

23.2.1 中心对称导学案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

第二十三章旋转23.2中心对称23.2.1中心对称学习目标:1.理解中心对称的定义.2.探究中心对称的性质.3.掌握中心对称的性质及其应用.重点:掌握中心对称的性质及其应用.难点:探究中心对称的性质.自主学习一、知识链接1.回忆什么是轴对称?成轴对称的两个图形有什么性质?如果一个图形沿着对折后能与重合,则称这两个图形关于这条直线对称或轴对称;成轴对称的图形,它们的对应点的连线被对称轴.2.什么是旋转?旋转有哪些性质?确定图形旋转的三要素为、、;对应点到旋转中心的距离,对应点与旋转中心所连线段的夹角,旋转前、后的图形.课堂探究二、要点探究探究点1:中心对称及相关概念问题1观察下列图形的运动,说一说它们有什么共同点.,知识要点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心(简称中心).这两个图形在旋转后能够重合的对应点叫做关于对称中心的对称点.填一填:如图,△OCD与△OAB关于点O中心对称,则____是对称中心,点A与_____是对称点,点B与____是对称点.典例精析例1下列五组图形中,左边的图形与右边的图形成中心对称的有(  )A.1组B.2组C.3组D.4组方法点拨:判断两个图形是否成中心对称,就是看其中一个图形绕某一点旋转180°后能否与另一个图形重合.要点归纳:1.中心对称是一种特殊的旋转,其旋转角是180°.2.中心对称是两个图形之间一种特殊的位置关系.3.成中心对称的两个图形只有一个对称中心,对称中心可能在图形的外部、内部或图形上,当对称点一定在对称中心两侧或与对称中心重合.探究点2:中心对称的性质问题2如图,旋转三角尺,画出△ABC关于点O中心对称的△A′B′C′.找一找下图中△A′B′C′与△ABC关于点O是成中心对称,你能从图中找到哪些等量关系?,知识要点中心对称的性质:1.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分(即每组对称点与对称中心三点共线).2.中心对称的两个图形是全等形.例2如图①,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是(  )A.点A与点A′是对称点B.BO=B′OC.AB=A′B′D.∠ACB=∠C′A′B′图①图②变式如图②,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=6,则△DOC中CD边上的高为________.例3如图,已知△ABC与△A′B′C′中心对称,找出它们的对称中心O.方法总结:确定成中心对称的两个图形的对称中心的方法:①连接任意一组对称点,取这条线段的中点,这个中点就是对称中心;②连接任意两组对称点,两条线段的交点就是对称中心.例4(教材P65例1)(1)如图1,选择点O为对称中心,画出点A关于O点的对称点A';(2)如图2,选择点O为对称中心,画出与△ABC关于点O对称的△A'B'C'.,练一练如图,已知四边形ABCD和点O,试画出四边形ABCD关于点O成中心对称的图形A'B'C'D'.拓展提升想一想中心对称和轴对称有什么异同?(至少写出三点)轴对称中心对称123三、课堂小结中心对称概念旋转角是180°性质对应点的连线经过对称中心,且被对称中心平分作图应用1:作图形关于某点对称的图形;应用2:找出对称中心.,当堂检测1.判断正误:(1)成轴对称的两个图形一定是全等形,但全等的两个图形不一定是成轴对称的图形.()(2)成中心对称的两个图形一定是全等形.但全等的两个图形不一定是成中心对称的图形.()(3)全等的两个图形,不是成中心对称的图形,就是成轴对称的图形.()2.如下所示的4组图形中,左边数字与右边数字成中心对称的有()A.1组B.2组C.3组D.4组3.如图,已知△AOB与△DOC成中心对称,△AOB的周长是8,AB=3,则OC+OD=(  )A.3B.5C.6D.84.如图,已知等边△ABC和点O,画△A′B′C′,使△A′B′C′和△ABC关于点O成中心对称.5.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE,求证:DF=BE.,参考答案自主学习一、知识链接1.一条直线另一个图形垂直平分2.旋转中心旋转方向旋转角相等等于旋转角全等课堂探究二、要点探究探究点1:问题1解:旋转角为180°,旋转前后的图形重合.填一填OCD典例精析例1B探究点2:问题2解:图略.找一找解:(1)OA=OA′、OB=OB′、OC=OC′.(2)△ABC≌△A′B′C′.例2D变式8解析:设AB边上的高为h,∵△AOB的面积是12,AB=3,∴h=8.又∵△AOB与△DOC成中心对称,∴△COD≌△AOB,∴△DOC中CD边上的高是8.例3解:解法1:根据观察,B、B′应是对应点,连接BB′,用刻度尺找出BB′的中点O,则点O即为所求(图略);解法2:根据观察,B、B′及C、C′应是两组对应点,连接BB′、CC′,BB′、CC′相交于点O,则点O即为所求(图略).例4解:作法:(1)连接AO并延长到A',使OA'=OA,即可得到点A的对应点A';(2)作出A,B,C三点关于点O的对称点A',B',C',顺次连接A'B',B'C',C'A',则三角形A'B'C'即为所作.练习解:作法:1.连接AO并延长到A',使OA'=OA,得到点A的对应点A';2.同理,可作出点B,C,D的对应点B',C',D';3.顺次连接A',B',C',D',则四边形A'B'C'D'即为所作.拓展提升轴对称中心对称1有一条对称轴——直线有一个对称中心——点2图形沿轴对折(翻转180°)图形绕中心旋转180°3翻转后两个图形重合旋转后两个图形重合当堂检测1.(1)√(2)√(3)×2.C3.B4.图略,5.证明:∵△ABO与△CDO关于O点中心对称,∴BO=DO,AO=CO,∵AF=CE,∴AO-AF=CO-CE,∴FO=EO,在△FOD和△EOB中∴△FOD≌△EOB(SAS).∴DF=BE.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-31 14:00:02 页数:7
价格:¥1 大小:749.24 KB
文章作者:随遇而安

推荐特供

MORE