首页

23.1 第1课时 旋转的概念与性质导学案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

第二十三章旋转23.1图形的旋转23.1.1第1课时旋转的概念与性质学习目标:1.掌握旋转的有关概念及基本性质.2.能够根据旋转的基本性质解决实际问题.重点:掌握旋转的有关概念及基本性质.难点:探索旋转的性质并能运用旋转的性质解决实际问题.自主学习一、知识链接1.将图①平移,使点A的对应点为点C,画出平移后的图形.2.如图②,已知△ABC和直线l,请画出△ABC关于直线l的对称图形.图①图②课堂探究二、要点探究探究点1:旋转的概念观察与思考问题观察下面的现象,它有什么特点?钟表的指针在不停地转动,从12时到4时,时针转动了______度.风车风轮的每个叶片在风的吹动下转动到新的位置.,思考怎样来定义上面这些图形的变换?知识要点旋转的定义把一个平面图形绕平面内某一点O转动一个角度,叫做图形的旋转.点O叫做旋转中心.转动的角叫做旋转角.如果图形上的点P经过旋转变为点P',这那么这两个点叫做这个旋转的对应点.转动的方向分为顺时针与逆时针.典例精析例1下列物体的运动是旋转的有.①电梯的升降运动;②行驶中的汽车车轮;③方向盘的转动;④骑自行车的人;⑤坐在摩天轮里的小朋友.方法总结:判断一种运动是否属于旋转,先看图形是否在同一平面内运动,其次要看是否有旋转中心,旋转角,旋转方向,还要注意判断变化前后图形大小是否发生了变化.例2若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是_________,旋转角等于____°,其中的对应点有_______、_______、_______、_______、_______、_______.练习如图,△ABD经过旋转后到△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?顺时针还是逆时针?(3)如果M是AB的中点,经过上述旋转后,点M转到什么位置?,归纳总结:确定一次图形的旋转时,必须明确旋转中心、旋转角、旋转方向.温馨提示:旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素.典例精析例3如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°探究点2:旋转的性质△ABC如何运动到△A′B′C的位置?合作探究1根据图形填空旋转中心是点__________;图中对应点有;图中对应线段有_____________________________________.每对对应线段的长度关系是________.图中旋转角等于________°.合作探究2观察下图,你能得到什么结论?知识要点:旋转的性质1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等.想一想如图,将△ABC逆时针旋转△ADE,如何确定它们的旋转中心位置?,练一练如图,在平面直角坐标系xOy中,△ABC的顶点A(1,2)、B(-2,2)、C(-1,0).若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,-1)D.(2.5,0.5)方法总结:旋转中心在对应点连线的垂直平分线上,要找到旋转中心,找到两组对应点连线的垂直平分线的交点即可.例4如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,求∠B的度数.变式如图,△ABC为钝角三角形,将△ABC绕点A逆时针旋转120°,得到△AB'C',连接BB'.若AC'∥BB',则∠CAB'的度数为多少?例5如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,已知AF=5,AB=8,求DE的长度.方法总结:利用旋转的性质解决问题时应抓住以下几点:(1)明确旋转中的“变”与“不变”;(2)找准旋转前后的“对应关系”;(3)充分挖掘旋转过程中的相等关系.三、课堂小结定义三要素:旋转中心,旋转方向和旋转角度①对应点到旋转中心的距离相等;旋转性质②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等,当堂检测1.下列现象中属于旋转的有()①地下水位逐年下降;②传送带的移动;③水龙头开关的转动;④钟摆的运动;⑤荡秋千运动;⑥荡秋千运动.A.2个B.3个C.4个D.5个2.下列说法正确的是()A.旋转改变图形的形状和大小B.平移改变图形的位置C.平移图形可以向某方向旋转一定距离得到D.由平移得到的图形也一定可由旋转得到3.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠CAB是旋转角D.∠CAE是旋转角第3题图第4题图第5题图4.如图,在平面直角坐标系中,有一个Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.则旋转中心的坐标是()A.(0,0)B.(-1,0)C.(1,0)D.(0,-1)5.如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.拓展提高:6.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.,参考答案自主学习一、知识链接1.图略2.图略课堂探究二、要点探究探究点1:观察与思考钟表的指针在不停地转动,从12时到4时,时针转动了120度思考答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.风车风轮的每个叶片在风的吹动下转动到新的位置.典例精析例1②③⑤例2O∠AOB60A与BB与CC与DD与EE与FF与A练习解:(1)旋转中心是点A.(2)旋转了60°,逆时针.(3)点M转到了AC的中点上.典例精析例3C探究点2:合作探究1绕点C逆时针旋转45°填空:C点A与点A′,点B与点B′,点M与点M′,点N与点N′CA与CA′、CB与CB′、AB与A′B′相等45合作探究2解:角:∠AOA'=∠BOB'=∠COC';线:AO=A'O,BO=B'O,CO=C'O想一想解:如图,两条对应点连线段的垂直平分线的交点O即为旋转中心.练一练C例4解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AB=AD.1∴∠B=(180°-150°)=15°.2变式解:∵将△ABC绕点A逆时针旋转120°,得到△AB'C',∴∠BAB'=∠CAC'=120°,1AB=AB'.∴∠AB'B=(180°-120°)=30°.又∵AC'∥BB',∴∠B'AC'=∠AB'B=30°.2∴∠CAB'=∠CAC'-∠B'AC'=120°-30°=90°.例5解:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=5,AD=AB=8.∴DE=AD-AE=8-5=3.当堂检测1.C2.B3.D4.A5.135拓展训练:(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,∴DE=DM,∠EDM=90°,∵∠EDF=45°,∴∠FDM=45°,∴∠EDF=∠FDM.又∵DF=DF,DE=DM,∴△DEF≌△DMF.∴EF=MF.(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,∴EB=AB-AE=3-1=2,BM=BC+CM=3+1=4,∴BF=BM-MF=4-x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解55得x=.则EF的长为.22

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-31 13:40:01 页数:6
价格:¥1 大小:888.55 KB
文章作者:随遇而安

推荐特供

MORE