首页

13.3.2 第1课时 等边三角形的性质与判定1教案(人教版八上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

13.3.2 等边三角形第1课时 等边三角形的性质与判定1.掌握等边三角形的定义、性质和判定,明确其与等腰三角形的区别和联系.(重点)2.能应用等边三角形的知识进行简单的计算和证明.(难点)                   一、情境导入观察下面图形:师:等腰三角形中有一种特殊的三角形,你知道是什么三角形吗?生:等边三角形.师:对,等边三角形具有和谐的对称美.今天我们来学习等边三角形,引出课题.二、合作探究探究点一:等边三角形的性质【类型一】利用等边三角形的性质求角度如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.解析:因为△ABC三个内角为60°,∠ABE=40°,求出∠EBC的度数,因为BE=DE,所以得到∠EBC=∠D,求出∠D的度数,利用外角性质即可求出∠CED的度数.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵∠ABE=40°,∴∠EBC=∠ABC-∠ABE=60°-40°=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°.方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.【类型二】利用等边三角形的性质证明线段相等 如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:BM=EM.解析:要证BM=EM,根据等腰三角形的性质可知,证明△BDE为等腰三角形即可.证明:连接BD,∵在等边△ABC中,D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°.∵CE=CD,∴∠CDE=∠E.∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形.又∵DM⊥BC,∴BM=EM.方法总结:本题综合考查了等腰和等边三角形的性质,其中“三线合一”的性质是证明线段相等、角相等和线段垂直关系的重要方法.【类型三】等边三角形的性质与全等三角形的综合运用△ABC为正三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BM=CN,BN与AM相交于Q点,∠BQM等于多少度?解析:先根据已知条件利用SAS判定△ABM≌△BCN,再根据全等三角形的性质求得∠BQM=∠ABC=60°.解:∵△ABC为正三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC.在△AMB和△BNC中,∵∴△AMB≌△BNC(SAS),∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=∠ABC=60°.方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.探究点二:等边三角形的判定【类型一】等边三角形的判定等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.解析:先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC.在△ABP与△ACQ 中,∵∴△ABP≌△ACQ(SAS),∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.方法总结:判定一个三角形是等边三角形有两种方法:一是证明三角形三个内角相等;二是先证明三角形是等腰三角形,再证明有一个内角等于60°.【类型二】等边三角形的性质和判定的综合运用图①、图②中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图①,线段AN与线段BM是否相等?请说明理由;(2)如图②,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.解析:(1)由等边三角形的性质可以得出△ACN,△MCB两边及其夹角分别对应相等,两个三角形全等,得出线段AN与线段BM相等.(2)先求∠MCN=60°,通过证明△ACE≌△MCF得出CE=CF,根据等边三角形的判定得出△CEF的形状.解:(1)AN=BM.理由:∵△ACM与△CBN都是等边三角形,∴AC=MC,CN=CB,∠ACM=∠BCN=60°.∴∠MCN=60°,∠ACN=∠MCB.在△ACN和△MCB中,∵∴△ACN≌△MCB(SAS).∴AN=BM.(2)△CEF是等边三角形.证明:∵△ACN≌△MCB,∴∠CAE=∠CMB.在△ACE和△MCF中,∵∴△ACE≌△MCF(ASA),∴CE=CF.∴△CEF是等边三角形.方法总结:等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件.三、板书设计等边三角形的性质和判定1.等边三角形的定义;2.等边三角形的性质;3.等边三角形的判定方法.本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形.学习等边三角形的定义、性质和判定.让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力.让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识.在这节课中,要学生充分的自主探究,尝试提出问题和解决问题, 发展学生的自主探究能力.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-25 02:00:02 页数:4
价格:¥1 大小:781.06 KB
文章作者:随遇而安

推荐特供

MORE