首页

2023中考数学真题分项汇报16等腰三角形与直角三角形(共26道)(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/58

2/58

剩余56页未读,查看更多内容需下载

专题16等腰三角形与直角三角形(共26道)一、单选题1.(2023·江苏徐州·统考中考真题)如图,在中,为的中点.若点在边上,且,则的长为(    )  A.1B.2C.1或D.1或2【答案】D【分析】根据题意易得,然后根据题意可进行求解.【详解】解:∵,∴,∵点D为的中点,∴,∵,∴,①当点E为的中点时,如图,  ∴,学科网(北京)股份有限公司 ②当点E为的四等分点时,如图所示:  ∴,综上所述:或2;故选D.【点睛】本题主要考查含30度直角三角形的性质及三角形中位线,熟练掌握含30度直角三角形的性质及三角形中位线是解题的关键.2.(2023·甘肃兰州·统考中考真题)如图,在矩形中,点E为延长线上一点,F为的中点,以B为圆心,长为半径的圆弧过与的交点G,连接.若,,则(    )  A.2B.2.5C.3D.3.5【答案】C【分析】利用直角三角形斜边中线的性质求得,在中,利用勾股定理即可求解.【详解】解:∵矩形中,∴,∵F为的中点,,∴,在中,,故选:C.学科网(北京)股份有限公司 【点睛】本题考查了矩形的性质,直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线的长等于斜边的一半”是解题的关键.3.(2023·北京·统考中考真题)如图,点A、B、C在同一条线上,点B在点A,C之间,点D,E在直线AC同侧,,,,连接DE,设,,,给出下面三个结论:①;②;③;  上述结论中,所有正确结论的序号是(    )A.①②B.①③C.②③D.①②③【答案】D【分析】如图,过作于,则四边形是矩形,则,由,可得,进而可判断①的正误;由,可得,,,,则,是等腰直角三角形,由勾股定理得,,由,可得,进而可判断②的正误;由勾股定理得,即,则,进而可判断③的正误.【详解】解:如图,过作于,则四边形是矩形,  ∴,∵,∴,①正确,故符合要求;∵,∴,,,,∵,学科网(北京)股份有限公司 ∴,,∴是等腰直角三角形,由勾股定理得,,∵,∴,②正确,故符合要求;由勾股定理得,即,∴,③正确,故符合要求;故选:D.【点睛】本题考查了矩形的判定与性质,全等三角形的性质,勾股定理,等腰三角形的判定,不等式的性质,三角形的三边关系等知识.解题的关键在于对知识的熟练掌握与灵活运用.4.(2023·江苏无锡·统考中考真题)如图中,,为中点,若点为直线下方一点,且与相似,则下列结论:①若,与相交于,则点不一定是的重心;②若,则的最大值为;③若,则的长为;④若,则当时,取得最大值.其中正确的为(    )  A.①④B.②③C.①②④D.①③④【答案】A【分析】①有3种情况,分别画出图形,得出的重心,即可求解;当,时,取得最大值,进而根据已知数据,结合勾股定理,求得的长,即可求解;③如图5,若,,根据相似三角形的性质求得,,,进而求得,即可求解;④如图6,根据相似三角形的性质得出,在中,,根据二次函数的性质,即可求取得最大值时,.【详解】①有3种情况,如图,和都是中线,点是重心;如图,四边形是平行四边形,是中点,点是重心;学科网(北京)股份有限公司 如图,点不是中点,所以点不是重心;①正确  ②当,如图时最大,,,,,,,②错误;  ③如图5,若,,∴,,,,,,,∴,,,∴,,∴,∴③错误;学科网(北京)股份有限公司 ④如图6,,∴,即,在中,,∴,∴,当时,最大为5,∴④正确.故选:C.【点睛】本题考查了三角形重心的定义,勾股定理,相似三角形的性质,二次函数的性质,分类讨论,画出图形是解题的关键.5.(2023·浙江·统考中考真题)如图,在四边形中,,以为腰作等腰直角三角形,顶点恰好落在边上,若,则的长是(    )  A.B.C.2D.1【答案】A【分析】先根据等腰三角形的性质可得,,,再判断出点四点共圆,在以为直径的圆上,连接,根据圆周角定理可得,,然后根据相似三角形的判定可得,根据相似三角形的性质即可得.【详解】解:是以为腰的等腰直角三角形,,,,,,,学科网(北京)股份有限公司 点四点共圆,在以为直径的圆上,如图,连接,  由圆周角定理得:,,,,,在和中,,,,,故选:A.【点睛】本题考查了圆内接四边形、圆周角定理、相似三角形的判定与性质、等腰三角形的性质等知识点,正确判断出点四点共圆,在以为直径的圆上是解题关键.6.(2023·四川眉山·统考中考真题)如图,在正方形中,点E是上一点,延长至点F,使,连结,交于点K,过点A作,垂足为点H,交于点G,连结.下列四个结论:①;②;③;④.其中正确结论的个数为(    )      A.1个B.2个C.3个D.4个【答案】C学科网(北京)股份有限公司 【分析】根据正方形的性质可由定理证,即可判定是等腰直角三角形,进而可得,由直角三角形斜边中线等于斜边一半可得;由此即可判断①正确;再根据,可判断③正确,进而证明,可得,结合,即可得出结论④正确,由随着长度变化而变化,不固定,可判断②不一定成立.【详解】解:∵正方形,∴,,∴,∵,∴,∴,,∴,∴是等腰直角三角形,,∵,∴,∵,∴,∴,故①正确;      又∵,,∴,∴,∵,即:,∴,学科网(北京)股份有限公司 ∴,故③正确,又∵,∴,∴,又∵,∴,故④正确,∵若,则,又∵,∴,而点E是上一动点,随着长度变化而变化,不固定,而,则故不一定成立,故②错误;综上,正确的有①③④共3个,故选:C.【点睛】本题考查三角形综合,涉及了正方形的性质,全等三角形、相似三角形的判定与性质,等腰三角形"三线合一"的性质,直角三角形的性质,熟练掌握正方形的性质、全等三角形的判定与性质、相似三角形的判定和性质、直角三角形斜边中线等于斜边的一半的性质是解题的关键.二、填空题7.(2023·湖南·统考中考真题)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为__________.  【答案】【分析】根据正方形的性质,以及七巧板的特点,求得的长,即可求解.学科网(北京)股份有限公司 【详解】解:如图所示,    依题意,,∴图中阴影部分的面积为故答案为:.【点睛】本题考查了正方形的性质,勾股定理,七巧板,熟练掌握以上知识是解题的关键.8.(2023·天津·统考中考真题)如图,在边长为3的正方形的外侧,作等腰三角形,.  (1)的面积为________;(2)若F为的中点,连接并延长,与相交于点G,则的长为________.【答案】3【分析】(1)过点E作,根据正方形和等腰三角形的性质,得到的长,再利用勾股定理,求出的长,即可得到的面积;(2)延长交于点K,利用正方形和平行线的性质,证明,得到的长,进而得到的长,再证明,得到,进而求出的长,最后利用勾股定理,即可求出的长.【详解】解:(1)过点E作,学科网(北京)股份有限公司   正方形的边长为3,,是等腰三角形,,,,在中,,,故答案为:3;(2)延长交于点K,正方形的边长为3,,,,,,,,F为的中点,,在和中,,,,由(1)可知,,,学科网(北京)股份有限公司 ,,,,,在中,,故答案为:.  【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.9.(2023·河南·统考中考真题)矩形中,M为对角线的中点,点N在边上,且.当以点D,M,N为顶点的三角形是直角三角形时,的长为______.【答案】2或【分析】分两种情况:当时和当时,分别进行讨论求解即可.【详解】解:当时,  ∵四边形矩形,∴,则,由平行线分线段成比例可得:,又∵M为对角线的中点,∴,学科网(北京)股份有限公司 ∴,即:,∴,当时,    ∵M为对角线的中点,∴为的垂直平分线,∴,∵四边形矩形,∴,则,∴∴,综上,的长为2或,故答案为:2或.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.10.(2023·湖北·统考中考真题)如图,和都是等腰直角三角形,,点在内,,连接交于点交于点,连接.给出下面四个结论:①;②;③;④.其中所有正确结论的序号是_________.学科网(北京)股份有限公司 【答案】①③④【分析】由题意易得,,,,则可证,然后根据全等三角形的性质及平行四边形的性质与判定可进行求解.【详解】解:∵和都是等腰直角三角形,∴,,,,∵,,∴,故①正确;∴,∴,,故③正确;∵,,,∴,;故②错误;∴,∵,∴四边形是平行四边形,∴,故④正确;故答案为①③④.【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定是解题的关键.11.(2023·山东·统考中考真题)如图,是边长为6的等边三角形,点在边上,若,,则_________.  【答案】【分析】过点A作于H,根据等边三角形的性质可得,再由,可得学科网(北京)股份有限公司 ,再根据,可得,从而可得,利用锐角三角函数求得,再由,求得,即可求得结果.【详解】解:过点A作于H,∵是等边三角形,∴,,∵,∴,∴,∵,∴,∴,∴,∵,∵,∴,∴,∴,故答案为:.  【点睛】本题考查等边三角形的性质、锐角三角函数,熟练掌握等边三角形的性质证明是解题的关键.12.(2023·山东日照·统考中考真题)如图,矩形中,,点P在对角线上,过点P学科网(北京)股份有限公司 作,交边于点M,N,过点M作交于点E,连接.下列结论:①;②四边形的面积不变;③当时,;④的最小值是20.其中所有正确结论的序号是__________.  【答案】②③④【分析】根据等腰三角形的三线合一可知,可以判断①;利用相似和勾股定理可以得出,,,利用判断②;根据相似可以得到,判断③;利用将军饮马问题求出最小值判断④.【详解】解:∵,,∴,在点P移动过程中,不一定,相矛盾,故①不正确;  延长交于点P,则为矩形,∴∵,,∴∴,学科网(北京)股份有限公司 ∴,∴,即,解得:,∴故②正确;∵,∴,∴,∴,∵,,∴,∴,∴,故③正确,,即当的最小值,作B、D关于的对称点,把图中的向上平移到图2位置,使得,连接,即为的最小值,则,,这时,即的最小值是20,故④正确;故答案为:②③④学科网(北京)股份有限公司   【点睛】本题考查矩形的性质,相似三角形的判定和性质,轴对称,掌握相似三角形的判定和性质是解题的关键.13.(2023·四川遂宁·统考中考真题)如图,以的边、为腰分别向外作等腰直角、,连结、、,过点的直线分别交线段、于点、,以下说法:①当时,;②;③若,,,则;④当直线时,点为线段的中点.正确的有_________.(填序号)  【答案】①②④【分析】①当时,是等边三角形,根据等角对等边,以及三角形的内角和定理即可得出,进而判断①;证明,根据全等三角形的性质判断②;作直线于点,过点作于点,过点作于点,证明,,,即可得是的中点,故④正确,证明,可得,在中,,在中,学科网(北京)股份有限公司 ,得出,在中,勾股定理即可求解.【详解】解:①当时,是等边三角形,∴∴∵等腰直角、,∴∴∴;故①正确;②∵等腰直角、,∴,∴∴∴;故②正确;④如图所示,作直线于点,过点作于点,过点作于点,  ∵,∴,又,∴又∵,∴同理得,,∴,,,∵,,,学科网(北京)股份有限公司 ∴,∴,即是的中点,故④正确,∴,设,则在中,在中,∴∴解得:∴,∴,∴∴在中,∴,故③错误故答案为:①②④.【点睛】本题考查了等腰直角三角形的性质,勾股定理,全等三角形的性质与判定,等腰三角形的性质,等边三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.14.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系中,点B的坐标为,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线与交于点D.与y轴交于点E.动点M在线段上,动点N在直线上,若是以点N为直角顶点的等腰直角三角形,则点M的坐标为________学科网(北京)股份有限公司   【答案】或【分析】如图,由是以点N为直角顶点的等腰直角三角形,可得在以为直径的圆上,,可得是圆与直线的交点,当重合时,符合题意,可得,当N在的上方时,如图,过作轴于,延长交于,则,,证明,设,可得,,而,则,再解方程可得答案.【详解】解:如图,∵是以点N为直角顶点的等腰直角三角形,∴在以为直径的圆上,,∴是圆与直线的交点,  学科网(北京)股份有限公司 当重合时,∵,则,∴,符合题意,∴,当N在的上方时,如图,过作轴于,延长交于,则,,∴,  ∵,,∴,∴,∴,设,∴,,而,∴,解得:,则,∴,学科网(北京)股份有限公司 ∴;综上:或.故答案为:或.【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,本题属于填空题里面的压轴题,难度较大,清晰的分类讨论是解本题的关键.15.(2023·江苏苏州·统考中考真题)如图,.过点作,延长到,使,连接.若,则________________.(结果保留根号)  【答案】/【分析】如图,过作于,设,可得,证明,,为等腰直角三角形,,,由勾股定理可得:,再解方程组可得答案.【详解】解:如图,过作于,  设,∵,,∴,学科网(北京)股份有限公司 ∵,∴,,为等腰直角三角形,∴,∴,由勾股定理可得:,整理得:,解得:,经检验不符合题意;∴;故答案为:.【点睛】本题考查的是等腰直角三角形的性质,勾股定理的应用,一元二次方程的解法,作出合适的辅助线构建直角三角形是解本题的关键.16.(2023·山西·统考中考真题)如图,在四边形中,,对角线相交于点.若,则的长为__________.  【答案】/【分析】过点A作于点H,延长,交于点E,根据等腰三角形性质得出,根据勾股定理求出,证明,得出,根据等腰三角形性质得出,证明,得出,求出,根据勾股定理求出,根据,得出,即,求出结果即可.学科网(北京)股份有限公司 【详解】解:过点A作于点H,延长,交于点E,如图所示:  则,∵,∴,∴,∵,,∴,∴,∵,∴,∴,∴,∵,,∴,∴,∴,即,解得:,∴,∵,∴,学科网(北京)股份有限公司 即,解得:.故答案为:.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.17.(2023·湖北十堰·统考中考真题)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形硬纸片剪切成如图所示的四块(其中D,E,F分别为,,的中点,G,H分别为,的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为____________,最大值为___________________.  【答案】8【分析】根据题意,可固定四边形,平移或旋转其它图形,组合成四边形,求出周长,判断最小值,最大值.【详解】  如图1,,,∴四边形周长=;学科网(北京)股份有限公司        如图2,∴四边形周长为;故答案为:最小值为8,最大值.【点睛】本题考查图形变换及勾股定理,通过平移、旋转组成满足要求的四边形是解题的关键.三、解答题18.(2023·北京·统考中考真题)在中、,于点M,D是线段上的动点(不与点M,C重合),将线段绕点D顺时针旋转得到线段.    (1)如图1,当点E在线段上时,求证:D是的中点;(2)如图2,若在线段上存在点F(不与点B,M重合)满足,连接,,直接写出的大小,并证明.【答案】(1)见解析(2),证明见解析【分析】(1)由旋转的性质得,,利用三角形外角的性质求出,可得,等量代换得到即可;(2)延长到H使,连接,,可得是的中位线,然后求出,设,,求出,证明,得到,再根据等腰三角形三线合一证明即可.【详解】(1)证明:由旋转的性质得:,,学科网(北京)股份有限公司 ∵,∴,∴,∴,∴,即D是的中点;(2);证明:如图2,延长到H使,连接,,∵,∴是的中位线,∴,,由旋转的性质得:,,∴,∵,∴,是等腰三角形,∴,,设,,则,,∴,∴,∵,∴,∴,∴,在和中,,∴,∴,∵,∴,即.学科网(北京)股份有限公司   【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.19.(2023·黑龙江·统考中考真题)如图①,和是等边三角形,连接,点F,G,H分别是和的中点,连接.易证:.若和都是等腰直角三角形,且,如图②:若和都是等腰三角形,且,如图③:其他条件不变,判断和之间的数量关系,写出你的猜想,并利用图②或图③进行证明.  【答案】图②中,图③中,证明见解析【分析】图②:如图②所示,连接,先由三角形中位线定理得到,,再证明得到,则,进一步证明,即可证明是等腰直角三角形,则;图③:仿照图②证明是等边三角形,则.【详解】解:图②中,图③中,图②证明如下:如图②所示,连接,∵点F,G分别是的中点,∴是的中位线,∴,同理可得,学科网(北京)股份有限公司 ∵和都是等腰直角三角形,且,∴,∴,∴,∴,∵,∴,∴是等腰直角三角形,∴;  图③证明如下:如图③所示,连接,∵点F,G分别是的中点,∴是的中位线,∴,同理可得,∵和都是等腰三角形,且,∴,∴,∴,学科网(北京)股份有限公司 ∴,∵,∴,∴是等边三角形,∴.  【点睛】本题主要考查了全等三角形的性质与判定,三角形中位线定理,等边三角形的性质与判定,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.20.(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.学科网(北京)股份有限公司   (1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系:______,______;(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.则,,之间的数量关系:______;(4)实践应用:正方形中,,若平面内存在点满足,,则______.【答案】(1),(2),,证明见解析(3)(4)或【分析】(1)根据已知得出,即可证明,得出,,进而根据三角形的外角的性质即可求解;(2)同(1)的方法即可得证;(3)同(1)的方法证明,根据等腰直角三角形的性质得出,即可得出结论;学科网(北京)股份有限公司 (4)根据题意画出图形,连接,以为直径,的中点为圆心作圆,以点为圆心,为半径作圆,两圆交于点,延长至,使得,证明,得出,勾股定理求得,进而求得,根据相似三角形的性质即可得出,勾股定理求得,进而根据三角形的面积公式即可求解.【详解】(1)解:∵,∴,又∵,,∴,∴,设交于点,  ∵∴,故答案为:,.(2)结论:,;证明:∵,∴,即,又∵,,∴∴,∵,,∴,学科网(北京)股份有限公司 ∴,(3),理由如下,∵,∴,即,又∵和均为等腰直角三角形∴,∴,∴,在中,,∴,∴;(4)解:如图所示,  连接,以为直径,的中点为圆心作圆,以点为圆心,为半径作圆,两圆交于点,延长至,使得,则是等腰直角三角形,学科网(北京)股份有限公司   ∵,∴,∵,∴∴,∴,∵,在中,,∴∴过点作于点,设,则,在中,,在中,∴∴解得:,则,设交于点,则是等腰直角三角形,∴学科网(北京)股份有限公司 在中,∴∴又,∴∴∴,∴∴,在中,∴,综上所述,或故答案为:或.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,正方形的性质,勾股定理,直径所对的圆周角是直角,熟练运用已知模型是解题的关键.21.(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在中,,D是边上一点,且(n为正整数),E是边上的动点,过点D作的垂线交直线于点F.【初步感知】学科网(北京)股份有限公司 (1)如图1,当时,兴趣小组探究得出结论:,请写出证明过程.【深入探究】(2)①如图2,当,且点F在线段上时,试探究线段之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接,设的中点为M.若,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).【答案】(1)见解析(2)①,证明过程略;②当点F在射线上时,,当点F在延长线上时,(3)【分析】(1)连接,当时,,即,证明,从而得到即可解答;(2)①过的中点作的平行线,交于点,交于点,当时,,根据,可得是等腰直角三角形,,根据(1)中结论可得,再根据,,即可得到;②分类讨论,即当点F在射线上时;当点F在延长线上时,画出图形,根据①中的原理即可解答;(3)如图,当与重合时,取的中点,当与重合时,取的中点,可得的轨迹长度即为的长度,可利用建系的方法表示出的坐标,再利用中点公式求出,最后利用勾股定理即可求出的长度.【详解】(1)证明:如图,连接,学科网(北京)股份有限公司   当时,,即,,,,,,,即,,,在与中,,,,;(2)①证明:如图,过的中点作的平行线,交于点,交于点,  当时,,即,是的中点,学科网(北京)股份有限公司 ,,,,,,是等腰直角三角形,且,,根据(1)中的结论可得,;故线段之间的数量关系为;②解:当点F在射线上时,如图,在上取一点使得,过作的平行线,交于点,交于点,  同①,可得,,,,,同①可得,,即线段之间数量关系为;当点F在延长线上时,如图,在上取一点使得,过作的平行线,交于点,交于点,连接学科网(北京)股份有限公司   同(1)中原理,可证明,可得,,,,,同①可得,即线段之间数量关系为,综上所述,当点F在射线上时,;当点F在延长线上时,;(3)解:如图,当与重合时,取的中点,当与重合时,取的中点,可得的轨迹长度即为的长度,  如图,以点为原点,为轴,为轴建立平面直角坐标系,过点作的垂线段,交于点,过点作的垂线段,交于点,学科网(北京)股份有限公司   ,,,,,,,是的中点,,,,,根据(2)中的结论,,,,学科网(北京)股份有限公司 ,,.【点睛】本题考查了等腰三角形的性质,全等三角形的判定及性质,相似三角形的判定及性质,平行线的性质,正确地画出图形,作出辅助线,找对边之间的关系是解题的关键.22.(2023·吉林长春·统考中考真题)如图①.在矩形.,点在边上,且.动点从点出发,沿折线以每秒个单位长度的速度运动,作,交边或边于点,连续.当点与点重合时,点停止运动.设点的运动时间为秒.()  (1)当点和点重合时,线段的长为__________;(2)当点和点重合时,求;(3)当点在边上运动时,的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点关于直线的对称点,连接、,当四边形和矩形重叠部分图形为轴对称四边形时,直接写出的取值范围.【答案】(1)(2)(3)见解析(4)或或【分析】(1)证明四边形是矩形,进而在中,勾股定理即可求解.(2)证明,得出;(3)过点作于点,证明得出,即可得出结论(4)分三种情况讨论,①如图所示,当点在上时,②当点在上时,当学科网(北京)股份有限公司 重合时符合题意,此时如图,③当点在上,当重合时,此时与点重合,则是正方形,即可求解.【详解】(1)解:如图所示,连接,    ∵四边形是矩形∴∵,∴四边形是矩形,当点和点重合时,∴,在中,,故答案为:.(2)如图所示,  ∵,,∴,∴∴,∴,∵,,∴;(3)如图所示,过点作于点,学科网(北京)股份有限公司   ∵,,∴,则四边形是矩形,∴又∵∴,∴∴∴是等腰直角三角形;(4)①如图所示,当点在上时,  ∵,在中,,则,∵,则,,在中,,∴解得:当时,点在矩形内部,符合题意,学科网(北京)股份有限公司 ∴符合题意,②当点在上时,当重合时符合题意,此时如图,  则,,在中,,解得:,③当点在上,当重合时,此时与点重合,则是正方形,此时  综上所述,或或.【点睛】本题考查了矩形的性质,正方形的性质与判定,勾股定理,求正切,轴对称的性质,分类讨论,分别画出图形,数形结合是解题的关键.23.(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,和都是等边三角形,点关于的对称点在边上.①求证:;②用等式写出线段,,的数量关系,并说明理由.【模型应用】(2)如图2,是直角三角形,,,垂足为,点关于的对称点在边上.用等式写出线段,,的数量关系,并说明理由.【模型迁移】学科网(北京)股份有限公司 (3)在(2)的条件下,若,,求的值.  【答案】(1)①见解析;②,理由见解析;(2),理由见解析;(3)【分析】(1)①证明:,再证明即可;②由和关于对称,可得.证明,从而可得结论;(2)如图,过点作于点,得,证明,.可得,证明,,可得,则,可得,从而可得结论;(3)由,可得,结合,求解,,如图,过点作于点.可得,,可得,再利用余弦的定义可得答案.【详解】(1)①证明:∵和都是等边三角形,∴,,,∴,∴,∴.∴.学科网(北京)股份有限公司   ②.理由如下:∵和关于对称,∴.∵,∴.∴.(2).理由如下:如图,过点作于点,得.    ∵和关于对称,∴,.∵,∴,∴.∴.∵是直角三角形,,∴,,学科网(北京)股份有限公司 ∴,∴,∴,∴,∴,∴.∴,即.(3)∵,∴,∵,∴,∴.如图,过点作于点.  ∵,∴,.∴.∴.【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,勾股定理的应用,轴对称的性质,锐角三角函数的灵活应用,本题难度较高,属于中考压轴题,作出合适的辅助线是解本题的关键.24.(2023·重庆·统考中考真题)如图,在等边中,于点,为线段上一动点(不与学科网(北京)股份有限公司 ,重合),连接,,将绕点顺时针旋转得到线段,连接.(1)如图1,求证:;(2)如图2,连接交于点,连接,,与所在直线交于点,求证:;(3)如图3,连接交于点,连接,,将沿所在直线翻折至所在平面内,得到,将沿所在直线翻折至所在平面内,得到,连接,.若,直接写出的最小值.【答案】(1)见解析(2)见解析(3)【分析】(1)根据旋转的性质得出,,进而证明,即可得证;(2)过点作,交点的延长线于点,连接,,证明四边形四边形是平行四边形,即可得证;(3)如图所示,延长交于点,由(2)可知是等边三角形,根据折叠的性质可得,,进而得出是等边三角形,由(2)可得,得出四边形是平行四边形,则,进而得出,则,当取得最小值时,即时,取得最小值,即可求解.【详解】(1)证明:∵为等边三角形,∴,,∵将绕点顺时针旋转得到线段,∴,学科网(北京)股份有限公司 ∴∴即在和中,∴,∴;(2)证明:如图所示,过点作,交点的延长线于点,连接,,    ∵是等边三角形,∴,∵∴∴垂直平分,∴又∵,∴,∴,  ∴在的垂直平分线上,学科网(北京)股份有限公司 ∵∴在的垂直平分线上,∴垂直平分∴,∴又∵,∴是等边三角形,∴∴∴,又∵,∴∴,∴在与中,∴∴∴∴四边形是平行四边形,∴;(3)解:依题意,如图所示,延长交于点,学科网(北京)股份有限公司   由(2)可知是等边三角形,∴∵将沿所在直线翻折至所在平面内,得到,将沿所在直线翻折至所在平面内,得到,∴,∴,∴是等边三角形,  ∴由(2)可得∴,∵,∴,∵,∴∴四边形是平行四边形,∴由(2)可知是的中点,则∴∴∵折叠,,学科网(北京)股份有限公司 ∴,又,∴,∴当取得最小值时,即时,取得最小值,此时如图所示,  ∴,∴,∴.【点睛】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.25.(2023·湖南岳阳·统考中考真题)如图1,在中,,点分别为边的中点,连接.初步尝试:(1)与的数量关系是_________,与的位置关系是_________.特例研讨:(2)如图2,若,先将绕点顺时针旋转(为锐角),得到,当点在同一直线上时,与相交于点,连接.学科网(北京)股份有限公司 (1)求的度数;(2)求的长.深入探究:(3)若,将绕点顺时针旋转,得到,连接,.当旋转角满足,点在同一直线上时,利用所提供的备用图探究与的数量关系,并说明理由.【答案】初步尝试:(1);;(2)特例研讨:(1);(2);(3)或【分析】(1),点分别为边的中点,则是的中位线,即可得出结论;(2)特例研讨:(1)连接,,证明是等边三角形,是等边三角形,得出;(2)连接,证明,则,设,则,在中,,则,在中,,勾股定理求得,则;(3)当点在同一直线上时,且点在上时,设,则,得出,则在同一个圆上,进而根据圆周角定理得出,表示与,即可求解;当在上时,可得在同一个圆上,设,则,设,则,则,表示与,即可求解.【详解】初步尝试:(1)∵,点分别为边的中点,∴是的中位线,∴;;故答案是:;(2)特例研讨:(1)如图所示,连接,,学科网(北京)股份有限公司   ∵是的中位线,∴,∴∵将绕点顺时针旋转(为锐角),得到,∴;∵点在同一直线上时,∴又∵在中,是斜边的中点,∴∴∴是等边三角形,∴,即旋转角∴∴是等边三角形,又∵,∴,∴,∴,∴,(2)如图所示,连接,∵,,∴,,学科网(北京)股份有限公司   ∵,∴,∴,设,则,在中,,则,在中,,∴,解得:或(舍去)∴,(3)如图所示,当点在同一直线上时,且点在上时,  ∵,∴,设,则,∵是的中位线,∴学科网(北京)股份有限公司 ∴,∵将绕点顺时针旋转,得到,∴,,∴∴,∵点在同一直线上,∴∴,∴在同一个圆上,  ∴∴∵,∴;如图所示,当在上时,学科网(北京)股份有限公司   ∵∴在同一个圆上,设,则,将绕点顺时针旋转,得到,设,则,则,∴,∵,∴,∵∴∴综上所述,或【点睛】本题考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.学科网(北京)股份有限公司

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-08 00:09:01 页数:58
价格:¥20 大小:4.53 MB
文章作者:xmxhq

推荐特供

MORE