首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
历年真题
>
2023年新疆中考数学真题(Word版附答案)
2023年新疆中考数学真题(Word版附答案)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/25
2
/25
剩余23页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2023年新疆兵团中考数学真题及答案考生须知:1.本试卷分为试题卷和答题卷两部分,试题卷共4页,答题卷共2页.2.满分150分,考试时间120分钟.3.不得使用计算器.一、单项选择题(本大题共9小题,每小题4分,共36分.请按答题卷中的要求作答)1.﹣5的绝对值是()A.5B.﹣5C.D.【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2.下列交通标志中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A、C、D均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B能找到这样的一条直线,使直线两旁的部分能够完全重合,所以是轴对称图形;故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.我国自主研制的全球最大集装箱船“地中海泰莎”号的甲板面积近似于4个标准足球场,可承载吨的货物,数字用科学记数法可表示为()A.B.C.D.【答案】A【解析】学科网(北京)股份有限公司 【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.详解】解:.故选:A.【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.4.一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】根据即可求解.【详解】解:∵一次函数中,∴一次函数的图象不经过第四象限,故选:D.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.5.计算的结果是()A.B.C.D.【答案】C【解析】【分析】先计算单项式乘以单项式,然后根据单项式除以单项式进行计算即可求解.【详解】解:,故选:C.【点睛】本题考查了单项式除以单项式,熟练掌握单项式除以单项式的运算法则是解题的关键.6.用配方法解一元二次方程,配方后得到的方程是()A.B.C.D.学科网(北京)股份有限公司 【答案】D【解析】【分析】方程两边同时加上一次项系数一半的平方即计算即可.【详解】∵,∴,∴,∴,故选D.【点睛】本题考查了配方法,熟练掌握配方法的基本步骤是解题的关键.7.如图,在中,若,,则扇形(阴影部分)的面积是()A.B.C.D.【答案】B【解析】【分析】根据圆周角定理求得,然后根据扇形面积公式进行计算即可求解.【详解】解:∵,,∴,∴.故选:B.【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.8.如图,在中,以点为圆心,适当长为半径作弧,交于点,交于点,分别以点,为圆心,大于长为半径作弧,两弧在的内部交于点,作射线交于点.若,,则的长为()学科网(北京)股份有限公司 A.B.1C.D.2【答案】C【解析】【分析】过点作于点,勾股定理求得,根据作图可得是的角平分线,进而设,则,根据,代入数据即可求解.【详解】解:如图所示,过点作于点,在中,,,∴,根据作图可得是的角平分线,∴设,∵∴解得:故选:C.学科网(北京)股份有限公司 【点睛】本题考查了作角平分线,角平分线的性质,正弦的定义,勾股定理解直角三角形,熟练掌握基本作图以及角平分线的性质是解题的关键.9.如图,在平面直角坐标系中,直线与抛物线相交于点,.结合图象,判断下列结论:①当时,;②是方程的一个解;③若,是抛物线上的两点,则;④对于抛物线,,当时,的取值范围是.其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】根据函数图象直接判断①②,根据题意求得解析式,进而得出抛物线与轴的交点坐标,结合图形即可判断③,化为顶点式,求得顶点坐标,进而即可判断④,即可求解.【详解】解:根据函数图象,可得当时,,故①正确;∵在上,∴是方程的一个解;故②正确;∵,在抛物线上,∴解得:∴当时,解得:学科网(北京)股份有限公司 ∴当时,,当时,,∴若,是抛物线上的两点,则;故③正确;∵,顶点坐标为,∴对于抛物线,,当时,的取值范围是,故④错误.故正确的有3个,故选:B.【点睛】本题考查了二次函数图象与性质,待定系数法求二次函数解析式,求二次函数与坐标轴交点坐标,熟练掌握二次函数的性质是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分.请按答题卷中的要求作答)10.要使分式有意义,则x需满足的条件是______.【答案】【解析】【分析】根据分式有意义的条件即可求解.【详解】解:∵分式有意义,∴∴,故答案为:.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.11.若正多边形的一个内角等于,则这个正多边形的边数是______.【答案】10##十【解析】【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n边形,根据题意得:,解得:.故答案为:10.【点睛】本题主要考查了正多边形的内角,在解题时要根据正多边形的内角公式列出式子是本题的关键.12.在平面直角坐标系中有五个点,分别是,,,,学科网(北京)股份有限公司 ,从中任选一个点恰好在第一象限的概率是______.【答案】【解析】【分析】根据第一象限的点的特征,可得共有2个点在第一象限,进而根据概率公式即可求解.【详解】解:在平面直角坐标系中有五个点,分别是,,,,,其中,,在第一象限,共2个点,∴从中任选一个点恰好在第一象限的概率是,故答案为:.【点睛】本题考查了概率公式求概率,第一象限点的坐标特征,熟练掌握以上知识是解题的关键.13.如图,在中,若,,,则______.【答案】【解析】分析】根据等边对等角得出,再有三角形内角和定理及等量代换求解即可.【详解】解:∵,,∴,∴,∵,∴,即,解得:,故答案为:.【点睛】题目主要考查等边对等角及三角形内角和定理,结合图形,找出各角之间的关系是解题关键.14.如图,在平面直角坐标系中,为直角三角形,,,学科网(北京)股份有限公司 .若反比例函数的图象经过的中点,交于点,则______.【答案】【解析】【分析】作交于点,根据题意可得,由点为的中点,可得,在中,通过解直角三角形可得,从而得到点,代入函数解析式即可得到答案.【详解】解:如图,作交于点,,,,,,点为的中点,,,,,学科网(北京)股份有限公司 ,,点在反比例函数图象上,,故答案为:.【点睛】本题主要考查了解直角三角形,反比例函数的图象与性质,熟练掌握反比例函数的图象与性质,添加适当的辅助线构造直角三角形,是解题的关键.15.如图,在中,,,,点是上一动点,将沿折叠得到,当点恰好落在上时,的长为______.【答案】##【解析】【分析】过点作交的延长线于点,根据平行四边形的性质以及已知条件得出,进而求得,根据折叠的性质得出,进而在中,勾股定理即可求解.【详解】解:如图所示,过点作交的延长线于点,∵在中,,,,学科网(北京)股份有限公司 ∴,∴,在中,∵将沿折叠得到,当点恰好落在上时,∴又∴∴∴设,∴在中,∴解得:(负整数)故答案为:.【点睛】本题考查了折叠的性质,平行四边形的性质,解直角三角形,熟练掌握折叠的性质是解题的关键.三、解答题(本大题共8小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.计算:(1);(2).【答案】(1)(2)【解析】【分析】(1)根据有理数的乘方,零指数幂,算术平方根的定义,进行计算即可求解;(2)根据平方差公式以及单项式乘以多项式的法则进行计算即可求解.【小问1详解】解:原式学科网(北京)股份有限公司 ;【小问2详解】解:原式.【点睛】本题考查了实数的混合运算,整式的乘法,熟练掌握有理数的乘方,零指数幂,算术平方根的定义,平方差公式以及单项式乘以多项式是解题的关键.17.(1)解不等式组:(2)金秋时节,新疆瓜果飘香.某水果店A种水果每千克5元,B种水果每千克8元,小明买了A、B两种水果共7千克花了41元.A、B两种水果各买了多少千克?【答案】(1);(2)购买A种水果5千克,则购买B种水果千克【解析】【分析】(1)先求出各个不等式的解集,然后确定不等式组的解集即可;(2)设购买A种水果x千克,则购买B种水果千克,根据题意列出方程求解即可.【详解】解:(1)解不等式①得:,解不等式②得:,∴不等式组解集为:;(2)设购买A种水果x千克,则购买B种水果千克,根据题意得:,解得:,∴,∴购买A种水果5千克,则购买B种水果千克.【点睛】题目主要考查求不等式组的解集及一元一次方程的应用,理解题意,熟练掌握运算法则及列出方程是解题关键.18.如图,和相交于点,,.点、分别是、的中点.学科网(北京)股份有限公司 (1)求证:;(2)当时,求证:四边形是矩形.【答案】(1)见解析(2)见解析【解析】【分析】(1)直接证明,得出,根据、分别是、的中点,即可得证;(2)证明四边形是平行四边形,进而根据,推导出是等边三角形,进而可得,即可证明四边形是矩形.【小问1详解】证明:在与中,∴,∴,又∵、分别是、的中点,∴;【小问2详解】∵,∴四边形是平行四边形,,∵为的中点,,∴,∵,∴,∴是等边三角形,学科网(北京)股份有限公司 ∴,∴,∴四边形是矩形.【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,矩形判定,熟练掌握以上知识是解题的关键.19.跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:100 110 114 114 120 122 122 131 144 148152 155 156 165 165 165 165 174 188 190对这组数据进行整理和分析,结果如下:平均数众数中位数145请根据以上信息解答下列问题:(1)填空:______,______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀?(3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由.【答案】(1),(2)(3)是,理由见解析【解析】【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解;(3)根据中位数的定义即可求解;【小问1详解】解:这组数据中,165出现了4次,出现次数最多∴,这组数据从小到大排列,第10个和11个数据分别为,∴,学科网(北京)股份有限公司 故答案为:,.【小问2详解】解:∵跳绳165次及以上人数有7个,∴估计七年级240名学生中,有个优秀,【小问3详解】解:∵中位数为,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键.20.烽燧即烽火台,是古代军情报警的一种措施,史册记载,夜间举火称“烽”,白天放烟称“燧”.克孜尔尕哈烽燧是古丝绸之路北道上新疆境内时代最早、保存最完好、规模最大的古代烽燧(如图1).某数学兴趣小组利用无人机测量该烽燧的高度,如图2,无人机飞至距地面高度米的A处,测得烽燧的顶部C处的俯角为,测得烽燧的底部B处的俯角为,试根据提供的数据计算烽燧的高度.(参数据:,,,,,)【答案】米【解析】【分析】过点A作的平行线交的延长线于点G,过点C作,根据题意得出边形为矩形,,再由正切函数求解即可.【详解】解:过点A作的平行线交的延长线于点G,过点C作,如图所示:学科网(北京)股份有限公司 根据题意得:四边形为矩形,,∴,∴,∵,∴米,∴米.【点睛】题目主要考查解三角形的应用,理解题意,结合图形求解是解题关键.21.随着端午节的临近,,两家超市开展促销活动,各自推出不同的购物优惠方案,如下表:超市超市优惠方案所有商品按八折出售购物金额每满元返元(1)当购物金额为元时,选择超市______(填“”或“”)更省钱;当购物金额为元时,选择超市______(填“”或“”)更省钱;(2)若购物金额为()元时,请分别写出它们的实付金额(元)与购物金额(元)之间的函数解析式,并说明促销期间如何选择这两家超市去购物更省钱?(3)对于超市的优惠方案,随着购物金额的增大,顾客享受的优惠率不变,均为%(注:).若在超市购物,购物金额越大,享受的优惠率一定越大吗?请举例说明.【答案】(1),(2),,当或时选择学科网(北京)股份有限公司 超市更省钱,当时,选择超市更省钱(3)不一定,理由见解析【解析】【分析】(1)根据题意,分别计算购物金额为和元时,两家超市的费用,比较即可求解;(2)根据题意列出函数关系,根据当时,,得出时选择超市更省钱,结合题意,即可求解;(3)根据题意以及(2)的结论,举出反例即可求解.【小问1详解】解:购物金额为元时,超市费用为(元)超市费用为80元,∵,∴当购物金额80元时,选择超市更省钱;购物金额为元时,超市费用为(元)超市费用为元∵,∴当购物金额为130元时,选择超市更省钱;故答案为:,.【小问2详解】解:依题意,,当时,超市没有优惠,故选择超市更省钱,当时,解得:∴当时,选择超市更省钱,综上所述,或时选择超市更省钱,当时,选择超市更省钱,当时,两家一样,综上所述,当或时选择超市更省钱,当时,选择超市更省钱;【小问3详解】学科网(北京)股份有限公司 在超市购物,购物金额越大,享受的优惠率不一定越大,例如:当超市购物元,返元,相当于打折,即优惠率为,当超市购物元,返元,则优惠率为,∴在超市购物,购物金额越大,享受的优惠率不一定越大,【点睛】本题考查了一次函数的应用,根据题意列出函数关系式是解题的关键.22.如图,是的直径,点,是上的点,且,连接,过点作的垂线,交的延长线于点,交的延长线于点,过点作于点,交于点.(1)求证:是的切线;(2)若,,求的长.【答案】(1)见解析(2)【解析】【分析】(1)连接,根据,得出,由,得出,根据已知条件得出,证明,结合已知条件可得,即可得证;(2)连接,根据已知条件得出,,得出,证明,得出,,进而求得,,根据,求得,进而即可求解.【小问1详解】证明:如图所示,连接,学科网(北京)股份有限公司 ∵,∴,∵,∴∵,∴,∴∴∵∴∵是半径,∴是的切线;【小问2详解】解:如图所示,连接,∵,,设,则∴,∴,即解得:,∵,∴∵∴,学科网(北京)股份有限公司 ∴,∵是直径,∴,∴,∴,又,∴,∴,,∴,∴,解得:,∴∴,∵是的直径,∴,∵,∴∴,∴,∴,设,则,∴,∵,,∴,∵,∴学科网(北京)股份有限公司 ∴,∴,∵,∴,∴.【点睛】本题考查了切线的判定,解直角三角形,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.23.【建立模型】(1)如图,点是线段上的一点,,,,垂足分别为,,,.求证:;【类比迁移】(2)如图,一次函数的图象与轴交于点、与轴交于点,将线段绕点逆时针旋转得到、直线交轴于点.①求点的坐标;②求直线的解析式;【拓展延伸】(3)如图,抛物线与轴交于,两点点在点的左侧,与轴交于点,已知点,,连接.抛物线上是否存在点,使得,若存在,求出点的横坐标.【答案】(1)见解析;(2)①;②直线的解析式为;(3)或【解析】【分析】[建立模型](1)根据题意得出,,证明,即可得证;[类比迁移](2)①过点作轴于点,同(1)的方法,证明,根据一次函数的图象与轴交于点、与轴交于点,求得,,进而可得点的坐标;学科网(北京)股份有限公司 ②由,设直线的解析式为,将点代入得直线的解析式为;[拓展延伸](3)根据解析式求得,;①当点在轴下方时,如图所示,连接,过点作于点,过点作轴于点,过点作,于点,证明,根据得出,设,则,求得点,进而求得直线的解析式,联立抛物线解析式即可求解;②当点在轴的上方时,如图所示,过点作,于点,过点作轴,交轴于点,过点作于点,同①的方法即可求解.【详解】[建立模型](1)证明:∵,,,∴,∴,∴,又∵,∴;[类比迁移](2)如图所示,过点作轴于点,∵将线段绕点逆时针旋转得到,∴,又,∴,∴,∴,∵一次函数的图象与轴交于点、与轴交于点,学科网(北京)股份有限公司 当时,,即,当时,,即,∴,∴,∴;②∵,设直线的解析式为,将代入得:解得:∴直线的解析式为,(3)∵抛物线与轴交于,两点点在点的左侧,当时,,解得:,∴,;①当点在轴下方时,如图所示,连接,过点作于点,过点作轴于点,过点作,于点,∵,∴,学科网(北京)股份有限公司 ∴,∴,∵,∴,设,则,∵,∴,,∵,,∴,解得:,∴,设直线的解析式为,代入,得:,解得:,∴直线解析式为,联立,解得:(舍去),;②当点在轴的上方时,如图所示,过点作于点,过点作轴,交轴于点,过点作于点,学科网(北京)股份有限公司 同理可得,∴,设,则,∵,∴,,∵,∴,解得:,∴,设直线的解析式为,代入,得:,解得:,∴直线解析式为,联立,解得:(舍去),,学科网(北京)股份有限公司 综上所述,的横坐标为或.【点睛】本题考查了二次函数综合运用,待定系数法求一次函数解析式,相似三角形的性质与判定,全等三角形的性质与判定,旋转的性质等知识,熟练掌握以上知识是解题的关键.学科网(北京)股份有限公司
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2021年新疆乌鲁木齐中考化学真题(解析版)
新疆2022年中考道德与法治真题试卷附真题答案
2023年河南鹤壁中考数学真题(Word版附答案)(A卷)
2023年河南焦作中考数学真题(Word版附答案)(A卷)
2023年河南洛阳中考数学真题(Word版附答案)(A卷)
2023年江苏苏州中考数学真题(Word版附答案)
2023年江西中考数学真题(Word版附答案)
2023年安徽中考语文真题(Word版附答案)
2023年江西中考语文真题(Word版附答案)
2023年新疆中考语文真题(Word版附答案)
文档下载
收藏
所属:
中考 - 历年真题
发布时间:2023-06-27 05:36:01
页数:25
价格:¥3
大小:3.53 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划