首页

北师大版数学九年级上册第六章检测题及答案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/8

2/8

剩余6页未读,查看更多内容需下载

北师大版数学九年级上册第六章检测题(反比例函数)一、选择题。1.已知反比例函数y=,当1<x<3时,y的最小整数值是(  )A.3B.4C.5D.62.已知反比例函数y=﹣,下列结论不正确的是(  )A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则0>y>﹣23.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积(  )A.减小B.增大C.先减小后增大D.先增大后减小4.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为(  )A.y1>y2B.y1<y2C.y1=y2D.无法确定5.如图,已知点P是双曲线y=(k≠0)上一点,过点P作PA⊥x轴于点A,且S△PAO=2,则该双曲线的解析式为(  ) A.y=﹣B.y=﹣C.y=D.y=6.下列式子中表示y是x的反比例函数的是(  )A.y=2x﹣3B.xy=5C.y=D.y=x7.已知点(2,﹣6)在函数y=kx的图象上,则y=的图象位于(  )A.第一、二象限B.第二、三象限C.第二、四象限D.第一、三象限8.函数中,自变量x的取值范围是(  )A.x≠3B.x≠﹣3C.x>3D.x>﹣39.如图,直线y=2x与双曲线y=的图象的一个交点坐标为(2,4),则它们的另一个交点坐标是(  )A.(﹣2,﹣4)B.(﹣2,4)C.(﹣4,﹣2)D.(2,﹣4)10.已知k>0,则函数y=kx,y=﹣的图象大致是(  )A.B.C.D.二、填空题11.对于函数y=,当x=时,y=  .12.若函数y=(m﹣1)是反比例函数,则m的值等于  . 13.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式 .14.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为  .15.已知点P在反比例函数y=的图象上,且点P的纵坐标是3,则P点关于x轴的对称点是  .三、解答题:16.请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式,并画出函数图象.举例:函数表达式:17.已知如图,反比例函数y=﹣的图象上有一点A(﹣2,■),它的纵坐标被墨水污染了,根据题意,解答下列问题. (1)求出点A的坐标;(2)过A作AB垂直于x轴,垂足为B,求△AOB的面积.18.已知函数y=和y=kx+1(k≠0).(1)若这两个函数的图象都经过点(1,a),求a和k的值;(2)当k取何值时,这两个函数的图象总有公共点.19.如图,已知等边△ABO在平面直角坐标系中,点A(4,0),函数y=(x>0,k为常数)的图象经过AB的中点D,交OB于E.(1)求k的值;(2)若第一象限的双曲线y=与△BDE没有交点,请直接写出m的取值范围. 20.已知如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.参考答案一、选择题:1.A2.B3.B4.B5.A6.B7.D8.A9.A10.C二、填空题11.8.12.﹣1. 13.y=﹣.14.﹣815.(2,﹣3).三、解答题:16.解:举例:要编织一块面积为2米2的矩形地毯,地毯的长x(米)与宽y(米)之间的函数关系式为y=(x>0).评分说明:①举出例子(4分),写出关系式得(2分),作出图形得(2分).x…12…y…421…②作图如不符合自变量的取值范围得(1分).17.解:(1)∵当x=﹣2时,y=﹣=3,∴A(﹣2,3);(2)∵A(﹣2,3),∴S△AOB=OB•AB=×2×3=3.18.解:(1)∵两函数的图象都经过点(1,a),∴.∴. (2)将y=代入y=kx+1,消去y.得kx2+x﹣2=0.∵k≠O,∴要使得两函数的图象总有公共点,只要△≥0即可.∴△=b2﹣4ac=1+8k≥0,解得k≥﹣;∴k≥﹣且k≠0.19.解:(1)过点B作BM⊥OA于点M,如图所示.∵点A(4,0),∴OA=4,又∵△ABO为等边三角形,∴OM=OA=2,BM=OA=6.∴点B的坐标为(2,6).∵点D为线段AB的中点,∴点D的坐标为(,)=(3,3).∵点D为函数y=(x>0,k为常数)的图象上一点,∴有3=,解得:k=9.(2)设过点B的反比例函数的解析式为y=,∵点B的坐标为(2,6),∴有6=,解得:n=12.若要第一象限的双曲线y=与△BDE没有交点,只需m<k或m>n即可,∴m<9或m>12.答:若第一象限的双曲线y=与△BDE没有交点,m的取值范围为m<9或m >12.20.解:(1)据题意,反比例函数的图象经过点A(﹣2,1),∴有m=xy=﹣2∴反比例函数解析式为y=﹣,又反比例函数的图象经过点B(1,n)∴n=﹣2,∴B(1,﹣2)将A、B两点代入y=kx+b,有,解得,∴一次函数的解析式为y=﹣x﹣1,(2)一次函数的值大于反比例函数的值时,x取相同值,一次函数图象在反比例函数上方即一次函数大于反比例函数,∴x<﹣2或0<x<1,

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-06-22 02:00:01 页数:8
价格:¥5 大小:118.64 KB
文章作者:135****1568

推荐特供

MORE