首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
沪科版(2012)
>
八年级下册
>
第19章 四边形
>
19.3 矩形、菱形、正方形
>
第19章四边形19.3.2第2课时菱形的判定课件
第19章四边形19.3.2第2课时菱形的判定课件
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/29
2
/29
3
/29
4
/29
剩余25页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
19.3.2菱形第19章四边形第2课时菱形的判定 一组邻边相等有一组邻边相等的平行四边形叫做菱形.平行四边形菱形的性质菱形两组对边平行四条边相等两组对角分别相等邻角互补两条对角线互相垂直平分每一条对角线平分一组对角边角对角线复习引入问题菱形的定义是什么?性质有哪些? 根据菱形的定义,可得菱形的第一个判定的方法:且AB=AD,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.数学语言有一组邻边相等的平行四边形叫做菱形.ABCD思考还有其他的判定方法吗? 小刚:分别以A、C为圆心,以大于AC的长为半径作弧,两条弧分别相交于点B,D,依次连接A、B、C、D四点.已知线段AC,你能用尺规作图的方法作一个菱形ABCD,并使AC为该菱形的一条对角线吗?CABD想一想:根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?猜想:四条边相等的四边形是菱形.四条边相等的四边形是菱形 证明:∵AB=BC=CD=AD,∴AB=CD,BC=AD.∴四边形ABCD是平行四边形.又∵AB=BC,∴四边形ABCD是菱形.已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.证一证ABCD 四条边都相等的四边形是菱形.AB=BC=CD=AD几何语言描述:在四边形ABCD中,∵AB=BC=CD=AD,∴四边形ABCD是菱形.ABCD菱形ABCD菱形的判定定理:归纳总结四边形ABCDABCD 下列命题中正确的是()A.一组邻边相等的四边形是菱形B.三条边相等的四边形是菱形C.四条边相等的四边形是菱形D.四个角相等的四边形是菱形C练一练 证明:∵∠1=∠2,AE=AC,AD=AD,∴△ACD≌△AED(SAS).同理,△ACF≌△AEF.∴CD=ED,CF=EF.又∵EF=ED,∴CD=ED=CF=EF.∴四边形CDEF是菱形.2例1如图,在△ABC中,AD是角平分线,点E、F分别在AB、AD上,且AE=AC,EF=ED.求证:四边形CDEF是菱形.ACBEDF1典例精析 例2如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.证明:由平移的性质得CF=AD=10cm,DF=AC.∵∠B=90°,AB=6cm,BC=8cm,∴AC=DF=AD=CF.∴四边形ACFD是菱形.四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.归纳 HGFEDCBA证明:连接AC、BD.∵四边形ABCD是矩形,∴AC=BD.∵点E、F、G、H为各边中点,∴EF=FG=GH=EH,∴四边形EFGH是菱形.例3如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形. CABDEFGH【变式题】如图,顺次连接对角线相等的四边形ABCD各边的中点,得到的四边形EFGH是什么四边形?解:四边形EFGH是菱形.又∵AC=BD,∵点E、F、G、H为各边中点,∴EF=FG=GH=HE.∴四边形EFGH是菱形.顺次连接对角线相等的四边形的各边中点,得到的四边形是菱形.归纳理由如下:连接AC、BD. CABDEFGH【变式题】如图,顺次连接对角线相等的四边形ABCD各边的中点,得到的四边形EFGH是什么四边形?解:四边形EFGH是菱形.又∵AC=BD,∵点E、F、G、H为各边中点,∴EF=FG=GH=HE.∴四边形EFGH是菱形.顺次连接对角线相等的四边形的各边中点,得到的四边形是菱形.归纳理由如下:连接AC、BD. 思考我们知道,把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分四边形ABCD的形状吗?ACDB分析:易知四边形ABCD是平行四边形,只需证一组邻边相等即可进一步判断.由题意可知BC边上的高和CD边上的高相等(AE=AF),通过证△ABE≌△ADF(AAS),即得AB=AD.请补充完整的证明过程EF 猜想:对角线互相垂直的平行四边形是菱形.你能证明这一猜想吗?我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,可得到一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?对角线互相垂直的平行四边形是菱形 证明:∵四边形ABCD是平行四边形,∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴□ABCD是菱形(菱形的定义).ABCOD已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O,AC⊥BD.求证:□ABCD是菱形.证一证 对角线互相垂直的平行四边形是菱形.AC⊥BD几何语言描述:在□ABCD中,∵AC⊥BD,∴□ABCD是菱形.ABCD菱形ABCDABCD□ABCD菱形的判定定理:归纳总结 例4如图,□ABCD的两条对角线AC、BD相交于点O,AB=5,AO=4,BO=3.求证:四边形ABCD是菱形.ABCDO又∵四边形ABCD是平行四边形,∵OA=4,OB=3,AB=5,证明:即AC⊥BD.∴AB2=OA2+OB2.∴△AOB是直角三角形,典例精析∴四边形ABCD是菱形. 例5如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.ABCDEFO12证明:∵四边形ABCD是矩形,∴AE∥FC,∴∠1=∠2.∵EF垂直平分AC,∴AO=OC.又∠AOE=∠COF,∴△AOE≌△COF.∴EO=FO.∴四边形AFCE是平行四边形.又∵EF⊥AC,∴四边形AFCE是菱形. 练一练在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是()A.∠ABC=90°B.AC⊥BDC.AB=CDD.AB∥CDB 例3如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;证明:∵D、E分别是AB、AC的中点,∴DE∥BC,且BC=2DE.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.菱形的性质与判定的综合运用 解:∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等边三角形.∴菱形的边长为4,高为.∴菱形的面积为.(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出是菱形;如果只知道一组邻边相等或对角线互相垂直,可以先尝试证明这个四边形是平行四边形.归纳 练一练如图,在□ABCD中,AC平分∠DAB,AB=2,求□ABCD的周长.解:在□ABCD中,AD∥BC,AB∥CD,∴∠DAC=∠ACB,∠BAC=∠ACD.∵AC平分∠DAB,∴∠DAC=∠BAC.∴∠DAC=∠ACD.∴AD=CD.∴四边形ABCD为菱形.∴菱形ABCD的周长为4AB=4×2=8. 2.一边长为13cm的平行四边形,两条对角线的长分别为24cm和10cm,则其面积为.120cm21.判断下列说法是否正确:(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.√╳╳╳ 3.如图,将△ABC沿BC方向平移得到△DCE,连接AD,增加下列条件能够判定四边形ACED为菱形的是()A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°B解析:∵将△ABC沿BC方向平移得到△DCE,∴AC∥DE,AC=DE.∴四边形ACED为平行四边形.当AC=BC时,平行四边形ACED是菱形.故选B. ABCDOE4.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD.∴四边形OCED是菱形. BCADOEMN证明:∵MN是AC的垂直平分线,∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°.∵CE∥AB,∴∠DAO=∠ECO.∴△ADO≌△CEO(ASA).∴AD=CE.∴四边形ADCE是平行四边形.又∵DE⊥AC,∴四边形ADCE是菱形.5.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形. 证明:由尺规作∠BAF的平分线的过程可得AB=AF,∠BAE=∠FAE.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAE=∠AEB.∴∠BAE=∠AEB.∴AB=BE.∴BE=FA.∴四边形ABEF为平行四边形.∵AB=AF,∴四边形ABEF为菱形.6.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E,连接EF.(1)求证:四边形ABEF为菱形; (2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO.在Rt△AOB中,由勾股定理得AO=4,∴AE=2AO=8. 有一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四边相等的四边形是菱形运用定理进行计算和证明菱形的判定定义法判定定理
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
19.3矩形、菱形、正方形2第2课时菱形的判定课件(沪科版八下)
19.2菱形2第2课时菱形的判定定理2课件(华师大版八下)
第一章特殊平行四边形1.1菱形的性质与判定第2课时菱形的判定课件(北师大版)
18.2.2 第2课时 菱形的判定教案
18.2.2 第2课时 菱形的判定导学案
18.2.2 第2课时 菱形的判定课件
沪科版数学八年级下册 19.3.2 第2课时 菱形的判定 课件
第19章四边形19.3.2第1课时菱形的性质教案
第19章四边形19.3.2第2课时菱形的判定教案
第19章四边形19.3.2第1课时菱形的性质课件
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-06-14 23:09:02
页数:29
价格:¥3
大小:4.76 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划