首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
四川省成都市树德中学2022-2023学年高二数学(文)下学期5月月考试题(Word版附解析)
四川省成都市树德中学2022-2023学年高二数学(文)下学期5月月考试题(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/22
2
/22
剩余20页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
树德中学高2021级高二下期5月阶段性测试数学(文科)一、选择题:本大题共12个小题,每小题5分,共60分.每小题只有一项是符合题目要求的1.已知A={,0,1},B={,,1},则A∪B的真子集的个数为()A.3B.7C.15D.31【答案】C【解析】【分析】根据并集的运算法则可求得,代入子集计算公式,即可求得答案.【详解】由题意得:,所以的真子集个数为个,故选:C2.若条件,条件,则是的()A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】【分析】利用充分条件和必要条件的定义即可求解.【详解】由题意可知,Ü,所以是的充分而不必要条件.故选:B.3.已知为实数,复数为纯虚数,则()A.1B.C.D.【答案】C【解析】【分析】复数为纯虚数,解得,代入中,利用复数的除法化简即可.【详解】复数为纯虚数,则,解得,. 故选:C4.对具有线性相关关系的变量,有一组观测数据,其回归方程为,且,,则实数的值是()A.B.C.D.【答案】D【解析】【分析】首先求出、,根据回归直线必过样本中心点,求出参数的值.【详解】解:,,,,样本中心点的坐标为,代入回归直线,可得,.故选:D.5.已知命题p:对任意x∈R,2x2+2x+<0,命题q:存在x∈R,sinx-cosx=,则下列判断正确的是( )A.p是真命题B.q是假命题C.p的否定是假命题D.q的否定是假命题【答案】D【解析】【分析】利用配方法可得2x2+2x+≥0判断命题p为假命题,由两角和的正弦公式判断命题q为真命题,则答案可求.【详解】∵2x2+2x+=,∴命题p:∀x∈R,2x2+2x+<0为假命题;∵sinx﹣cosx=sin(),∴命题q:∃x∈R,sinx﹣cosx=为真命题.∴¬q是假命题.故选D.6.执行如图所示的程序框图后,输出的值为4,则的取值范围是() A.B.C.D.【答案】C【解析】【分析】直接按照程序框图执行即可得出结果.【详解】因为时,执行循环体,时结束循环,输出,所以执行程序框图,;;;,结束循环,因此的取值范围为.故选:C.7.下列各图中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB//平面MNP的图形的序号是A.①③B.②③C.①④D.②④【答案】A【解析】【分析】运用线面平行的判定、面面平行及线面相交、面面平行的性质,并结合图形即可判断结论在各图中是否正确 【详解】,如图,作//,连接,得平面,平面⇒//平面即//平面,故①项正确;②项,如图,连结由已知可得平面//平面;∵和平面相交,∴不平行于平面,故②项错误;③项,如图,连接由已知可得//,而//,可得//,又∵//,,∴平面//平面,又∵平面∴//平面,故③项正确;④项,如图, 由//,平面,若//平面,又则平面//平面而由图可知,平面不可能平行平面∴不平行于平面,故④项错误.综上,①③符合题意.故选:A【点睛】本题考查了空间中的线面、面面平行关系,结合图形,综合运用了线面、面面平行的判定及面面平行的性质8.若函数有两个不同的极值点,则实数的取值范围是()A.B.C.D.【答案】C【解析】【分析】计算,再将问题转化为在有2个不同的两侧异号的实数根,从而利用二次函数的根的分布即可得解.【详解】函数的定义域为,因为有两个不同的极值点,所以在上有2个不同的零点,且零点两侧异号,所以在有2个不同的实数根,且根据二次函数的性质可知这两根的两侧函数值异号,所以,解得. 故选:C.9.已知,且,则下列结论一定正确的是()A.B.C.D.【答案】A【解析】【分析】由可得,构造函数,求导后判断函数的单调性,由此证明,结合指数函数性质判断BC.【详解】由,化简可得,故,又,故考虑构造函数,则当时,恒成立,所以在上单调递增,因为,即所以,A正确,D错误;因为,所以,B错误;取,则,因为在上单调递增,且,,存在满足该方程,此时,C错误;故选:A.10.已知双曲线的左、右焦点分别为,圆与的渐近线相切.为右支上的动点,过作两渐近线的垂线,垂足分别为.给出以下结论: ①的离心率;②两渐近线夹角为;③为定值;④的最小值为.则所有正确结论为()A.①②B.①③C.③④D.①③④【答案】D【解析】【分析】根据圆与渐近线相切可求出,,根据离心率公式求出离心率可判断①正确;根据渐近线方程可得倾斜角,从而可得两渐近线的夹角,可判断②不正确;设,根据点到直线距离公式求出为定值,可判断③正确;设,联立直线方程解得的坐标,再根据两点间的距离公式求出可判断④正确.【详解】因为圆与的渐近线相切,所以圆心到渐近线的距离等于圆的半径,即,解得,所以,离心率,故①正确;因为的渐近线为,所以两渐近线的倾斜角为和,所以两渐近线夹角为,故②不正确;设,则,定值,故③正确;依题意设, 联立,得,则,联立,,则,所以,因为,所以,当且仅当,即为双曲线的右顶点时,等号成立.故④正确.故选:D.11.定义在的函数的导函数满足,且,则不等式的解集为( )A.B.C.D.【答案】B【解析】【分析】构造函数,根据条件可得在上单调递增,进而即得.【详解】构造函数,则,所以在上单调递增,又,,由,可得,即,∴,即, 所以不等式的解集为:.故选:B.【点睛】关键点点睛:本题的关键是构造函数,然后利用导数判断函数的单调性,进而即得.构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.12.在三棱锥中,,则此三棱锥的外接球的表面积为()A.B.C.D.【答案】B【解析】【分析】正弦定理求外接圆半径,构造直角三角形利用勾股定理求三棱锥外接球半径,再求表面积.【详解】设三棱锥外接球的球心为,外接圆圆心为,如图所示,,,则;,则,,平面,则平面,中,由余弦定理,则,所以外接圆半径,,中,,即三棱锥的外接球的半径为,三棱锥的外接球的表面积为,故选:B 二、填空题:本大题共4个小题,每小题5分,共20分.13.已知点是曲线上任意一点,则点到直线的距离的最小值是__________.【答案】##【解析】【分析】先将极坐标方程化为直角坐标方程,再利用几何方法求圆上的点到直线距离的最小值.【详解】由,得,由,可得直角坐标方程,即.由,得,则直角坐标方程为,即.点在以为圆心,半径的圆上,因为点到直线的距离,所以所求最小值为点到直线的距离再减去上半径,即为.故答案为:.14.设变量满足:,则的最大值为__________.【答案】【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由线性约束条件作出可行域如图, 由得,由图可知,当直线过点时,直线有轴上截距最大,有最大值.故答案为:815.如图,一只蚂蚁在边长分别为,,的三角形区域内随机爬行,则其恰在离三个顶点距离都大于的地方的概率为__________.【答案】【解析】【详解】如图,三个扇形的面积之和为,所以阴影面积为,所以蚂蚁恰在离三个顶点距离都大于的地方(阴影区域)的概率为,故填.请在此填写本题解析!16.椭圆的左、右焦点分别为,过点作椭圆的切线,切点为,若点在线段上,且满足,则点的坐标为__________. 【答案】【解析】【分析】设出切线方程,与椭圆方程联立求出点的坐标,再利用结合三角形相似建立关系,求出点M的坐标作答.【详解】依题意,设方程为,不妨令点在轴上方,即,由消去y得,,则,解得,由,解得,即,而,则,,设,,因为,而,则,即有,于是,因此,解得所以点的坐标为.故答案为:三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知函数.(1)求函数的单调区间;(2)设函数,若函数在上单调递增,求实数的取值范围.【答案】(1)单调递增区间是和;单调递减区间是; (2)【解析】【分析】(1)直接对函数求导,再利用导数与函数的单调性间的关系,求出和的解,即可求出结果;(2)利用条件,将问题转化成导函数在区间上恒成立,构造函数,即求在上的最小值,进而可求出结果.【小问1详解】因为,所以,令,得或,令,得,所以的单调递增区间是和;的单调递减区间是;【小问2详解】函数,有,因为函数在区间上单调递增,所以在区间上恒成立,令,则等价于在上恒成立,函数的对称轴为,易知在区间上单调递增,在区间上单调递减,所以当时,,所以,即,解得,所以的取值范围是.18.某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20〜60岁的问卷中随机抽取了100份,统计结果如下面的图表所示.年龄分组抽取份答对全卷的人数答对全卷的人数占本组的概率 数[20,30)40280.7[30,40)n270.9[40,50)104b[50,60]20a0.1(1)分别求出n,a,b,c的值;(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60]的人中至少有1人被授予“环保之星”的概率.【答案】(1);(2).【解析】【详解】试题分析:(1)根据频率直方分布图,通过概率和为1,求求出n,a,b,c的值,(2)年龄在[40,50)中答对全卷的4人记为A,B,C,D,年龄在[50,60]中答对全卷的2人记为a,b,分别列举出所有的基本事件,根据概率公式计算即可.试题解析:(1)因为抽取总问卷为100份,所以n=100-(40+10+20)=30.年龄在中,抽取份数为10份,答对全卷人数为4人,所以b==0.4.年龄在中,抽取份数为20份,答对全卷人数占本组的概率为0.1,所以=0.1,得.根据频率直方分布图,得(0.04+0.03+c+0.01)×10=1,解得.(2)因为年龄在与中答对全卷的人数分别为4人与2人.年龄在中答对全卷的4人记为,,,,年龄在中答对全卷的2人记为,,则从这6人中随机抽取2人授予“环保之星”奖的所有可能的情况是:,, ,,,,,,,,,,,,,共15种.其中所抽取年龄在的人中至少有1人被授予“环保之星”的情况是:,,,,,,,,共9种.故所求的概率为.19.如图,在四棱锥中,平面,底面四边形为直角梯形,,,为中点.(1)求证:.(2)求点到平面的距离.【答案】(1)证明见解析(2)【解析】【分析】(1)利用线面垂直得到,再利用线线垂直得到线面垂直,即平面,进而得到,,从而得到平面,再利用线面垂直的性质定理即可证明结论;(2)利用等体积法,即利用,再利用条件求出,再求出,即可求出结果.【小问1详解】如图,取中点,连,,,又因为平面,且平面,所以,又因为,,平面,平面,所以平面,因平面,所以,又因为,,平面,平面,所以平面, 又因为平面,所以.【小问2详解】由已知得,,同理可得,又,,则,设点到平面的距离,由,得到,则,又因为,得到,所以,即点到平面的距离为20.已知椭圆,是椭圆上的两个不同的点,为坐标原点,三点不共线,记的面积为.(1)若,求证:;(2)记直线的斜率为,当时,试探究是否为定值并说明理由.【答案】(1)证明见解析 (2)1,理由见解析【解析】【分析】(1)由三角形面积公式,正余弦的平方关系和向量夹角余弦公式可得,再根据向量运算的坐标表示完成证明;(2)联立方程组,可得,设直线的方程分别为:,由此利用表示,进一步表示,可得结论.【小问1详解】设的夹角为,则,所以,则;【小问2详解】由可知,,所以,设直线的方程分别为:,设.则,所以 .【点睛】知识点点睛:本题考查三角形面积公式,同角关系,向量夹角公式,数量积的坐标表示,向量的模的坐标表示,直线与椭圆的交点的求法,椭圆中的定值问题,综合性强,有一定的计算难度,属于难题.21.设函数.(1)若直线是函数图像的一条切线,求实数的值;(2)若,当时,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)根据导数的几何意义列方程求的值;(2)原不等式可化为,设,由已知,讨论,利用导数研究的单调性,由此确定的取值范围.【小问1详解】函数的定义域为,导函数,设切点,则, 解得,,所以;【小问2详解】不等式可化为:,因为,所以,设,由已知令,则,令,则,再令,则,所以在单调递增,又,则,即,所以在单调递增,的值域为.①当时,即时,,则在单调递增,又,所以恒成立,符合.②当时,即时,当时,,所以存在,使,则当时,,函数在上单调递减,而,所以对成立,不符合.综上,实数的取值范围是.【点睛】对于恒成立问题,常用到以下两个结论:(1)恒成立⇔; (2)恒成立⇔.22.在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为.(1)设为参数,若,求直线的参数方程;(2)已知直线与曲线交于,设,且,求实数的值.【答案】(1)(为参数);(2).【解析】【分析】(1)由直线的极坐标方程求得直角坐标方程,将代入,得到,即可得到直线的参数方程;(2)将直线的参数方程与的直角坐标方程联立,得,由,得,由根与系数的关系即可计算出的值.【详解】(1)直线的极坐标方程为,所以,即,因为为参数,将代入上式得,所以直线的参数方程为(为参数);(2)由,得,由,代入,得将直线的参数方程与的直角坐标方程联立, 得,由,解得,设点和点分别对应参数、为上述方程的根,由韦达定理,,,由题意得,,,因为,所以,解得,或,因为,所以.【点睛】本题主要考查极坐标方程和直角坐标方程的转化、直线参数方程的应用、直线和曲线相交弦长问题,考查学生的分析转化能力和计算能力,属于中档题.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
四川省成都市树德中学2022-2023学年高二数学(文)上学期期中试卷(Word版附解析)
四川省成都市树德中学2022-2023学年高二语文下学期4月月考试题(Word版附解析)
四川省成都市树德中学2022-2023学年高二化学下学期4月月考试题(Word版附解析)
四川省成都市树德中学2022-2023学年高二历史下学期4月月考试题(Word版附解析)
四川省成都市树德中学2022-2023学年高二地理下学期4月月考试题(Word版附解析)
四川省成都市树德中学2022-2023学年高二地理下学期5月月考试题(PDF版附解析)
四川省成都市树德中学2022-2023学年高二政治下学期5月月考试题(PDF版附答案)
四川省成都市树德中学2022-2023学年高二数学(理)下学期5月月考试题(PDF版附答案)
四川省成都市树德中学2022-2023学年高二数学(文)下学期5月月考试题(PDF版附答案)
四川省成都市树德中学2022-2023学年高二数学(理)下学期5月月考试题(Word版附解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-06-03 14:24:02
页数:22
价格:¥2
大小:2.56 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划