首页

湘教版九下数学2.5.3切线长定理课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/23

2/23

3/23

4/23

剩余19页未读,查看更多内容需下载

2.5直线与圆的位置关系第2章圆2.5.3切线长定理 问题1通过前面的学习,我们了解到如何过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?问题2过圆外一点P作圆的切线,可以作几条?请欣赏小颖同学的作法(如右下图所示)!直径所对的圆周角是直角.复习引入POO.PBAAB P1.切线长的定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫作切线长.AO①切线是直线,不能度量.②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2.切线长与切线的区别在哪里?切线长的定义 合作探究BPOA问题在透明纸上画出下图,设PA,PB是圆O的两条切线,A、B是切点,沿直线OP对折图形,你能猜测一下PA与PB,∠APO与∠BPO分别有什么关系吗?切线长定理 PA=PB,∠APO=∠BPO.BPOA我们猜测过圆外一点所作的圆的两条切线长相等,这点和圆心的连线平分两条切线的夹角.接下来我们验证这个猜测. 推导与验证如图,连接OA,OB.∵PA,PB与⊙O相切,点A,B是切点,∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°.∵OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP(HL).∴PA=PB,∠OPA=∠OPBBPOA 切线长定理:过圆外一点引所画的圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.PA、PB分别切☉O于A、BPA=PB∠OPA=∠OPB几何语言:切线长定理为证明线段相等、角相等提供了新的方法.注意要点归纳BPOA 典例精析例1如图,AD是⊙O的直径,点C为⊙O外一点,CA和CB是⊙O的切线,A和B是切点,连接BD.求证:CO∥BD.分析:连接AB,因为AD为直径,那么∠ABD=90°.即BD⊥AB.因此要证CO∥BD,只要证CO⊥AB即可. 证明:连接AB.∵CA、CB是⊙O的切线,点A、B是切点,∴CA=CB,∠ACO=∠BCO.∴CO⊥AB.∵AD是⊙O的直径,∴∠ABD=90°,即BD⊥AB.∴CO∥BD. 若连结两切点A、B,AB交OP于点M.可以得到结论:OP垂直平分AB.APOBM拓展结论 (3)连接圆心和圆外一点.(2)连接两切点;(1)分别连接圆心和切点;方法归纳 例2如图,菱形ABCD的边长为10,圆O分别与AB、AD相切于E、F两点,且与BG相切于G点.若AO=5,且圆O的半径为3,则BG的长度为何?(  )A.4B.5C.6D.7 解析:连接OE,∵⊙O与AB相切于E,∴∠AEO=90°,∵AO=5,OE=3,∵AB=10,∴BE=6.∵BG与⊙O相切于G,∴BG=BE=6.故选C. 1.PA、PB是☉O的两条切线,A、B为切点,直线OP交☉O于点D、E,交AB于C.(1)写出图中所有的垂直关系;OA⊥PA,OB⊥PB,AB⊥OP.(2)写出图中与∠OAC相等的角;BPOACED∠OAC=∠OBC=∠APC=∠BPC. △AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP.(4)写出图中所有的等腰三角形.△ABP△AOB(3)写出图中所有的全等三角形;BPOACED 20°42.如图,PA、PB是⊙O的两条切线,切点分别是A、B,如果AP=4,∠APB=40°,则∠APO=,PB=.BPOA第2题 BPOA3.PA、PB是☉O的两条切线,A,B是切点,OA=3.(1)若AP=4,则OP=;(2)若∠BPA=60°,则OP=.56 4.如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠ACB=70°,那么∠OPA的度数是_____度.20 5.如图,PA、PB是⊙O的两条切线,切点为A、B,∠P=50°,点C是⊙O上异于A、B的点,则∠ACB=.65°或115°BPOA第5题 6.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是________cm. OPABCED解析:连接OA、OB、OC、OD和OE.∵PA、PB是☉O的两条切线,点A、B是切点,∴PA=PB=7.∠PAO=∠PBO=90°.∠AOB=360°-∠PAO-∠PBO-∠P=140°.(1)△PDE的周长是;7.如图,PA、PB是☉O的两条切线,点A、B是切点,在弧AB上任取一点C,过点C作☉O的切线,分别交PA、PB于点D、E.已知PA=7,∠P=40°.则(2)∠DOE=. ∵OA=OC,OD=OD,∴△AOD≌△COD,∴∠DOC=∠DOA=∠AOC.同理可得∠COE=∠COB.∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=70°.又∵DC、DA是☉O的两条切线,点C、A是切点,∴DC=DA.同理可得CE=EB.l△PDE=PD+DE+PE=PD+DC+CE+PE=PA+PB=14.OPABCED 切线长切线长定理作用过圆外一点所画的圆的两条切线长相等,圆心和这一点的连线平分两条切线的夹角.内容提供了证线段和角相等的新方法辅助线分别连接圆心和切点;连接两切点;连接圆心和圆外一点.经过圆外一点作圆的切线,这点和切点之间的线段的长.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-02-23 10:27:02 页数:23
价格:¥3 大小:3.83 MB
文章作者:随遇而安

推荐特供

MORE