首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
湖北省新高考联考协作体2022-2023学年高三数学上学期期末联考试题(Word版含解析)
湖北省新高考联考协作体2022-2023学年高三数学上学期期末联考试题(Word版含解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/14
2
/14
剩余12页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2023年湖北省高三上学期1月期末考试高三数学试卷考试时间:2023年1月10日上午8:00-10:00试卷满分:150分注意事项1.答卷前,考生务必将自己的姓名、考号等填写在答题卡和试卷指定的位置上。2.回答选择题时,选出每题答案后,用2B铅笔把答题卡对应题目的答案标号涂黑。如需要改动,先用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在试卷上无效。一、单项选择题(共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.已知集合,则A的子集共有()个A.3B.4C.6D.72.若复数z满足(其中i是虚数单位),复数z的共轭复数为,则()A.z的实部是B.z的虚部是C.复数在复平面内对应的点在第一象限D.3.2022年9月16日,接迎第九批在韩志愿军烈士遗骸回国的运20专机在两架歼20战机护航下抵达沈阳国际机场,歼20战机是我国自主研发的第五代最先进的战斗机,它具有高隐身性、高态势感知、高机动性能等特点,歼20机身头部是一个圆锥形,这种圆锥的轴截面是一个边长约为2米的正三角形,则机身头部侧面积约为()平方米A.B.C.D.4.“”是“方程表示焦点在y轴上的椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知是各项均为正数的等差数列,为其前n项和,且,则当取最大值时,()A.10B.20C.25D.506.已知,则()A.B.C.D.7.已知函数,且(其中e为自然对数的底数,为圆周率),则a,b,c的大小关系为() A.B.C.D.8.2022卡塔尔世界杯比赛场地是在卡塔尔的8座体育馆举办.将甲、乙、丙、丁4名裁判随机派往卢赛尔,贾努布,阿图玛玛三座体育馆进行执法,每座体育馆至少派1名裁判,A表示事件“裁判甲派往卢赛尔体有馆”;B表示事件“裁判乙派往卢赛尔体育馆”;C表示事件“裁判乙派往贾努布体育馆”,则()A.事件A与B相互独立B.事件A与C为互斥事件C.D.二、多项选择题(共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,全部选对得5分,部分选对得2分,有错选得0分)9.新冠肺炎疫情防控期间,进出小区、超市、学校等场所,我们都需要先进行体温检测某学校体温检测员对一周内甲,乙两名同学的体温进行了统计,其结果如图所示,则下列结论正确的是()A.乙同学体温的极差为B.甲同学体温的第三四分位数为C.甲同学的体温比乙同学的体温稳定D.乙同学体温的众数,中位数,平均数都相等10.已知函数的部分图象如图,则()A.函数解析式B.将函数的图象向左平移个单位长度可得函数的图象C.直线是函数图象的一条对称轴D.函数在区间上的最小值为 11.设圆,直线,P为l上的动点过点P作圆O的两条切线,切点为A,B,则下列说法中正确的是()A.直线l与圆O相交B.的取值范围为C.存在点P,使四边形为正方形D.当点P坐标为时,直线的方程为12.如图,棱长为2的正方体中,动点P满足.则以下结论正确的为()A.,使直线面B.直线与面所成角的正弦值为C.,三棱锥体积为定值D.当时,三棱锥的外接球表面积为三、填空题(共4小题,每小题5分,共计20分,请把答案填写在答题卡相应位置上)13.的展开式中的系数为___________.(用数字作答)14.若向量在向量上的投影向量为,且,则数量积___________.15.已知双曲线右焦点为,点P,Q在双曲线上,且关于原点O对称.若,且的面积为4,则双曲线的离心率___________.16.2022年12月3日,南昌市出士了东汉六棱锥体水晶珠灵摆吊坠如图(1)所示。现在我们通过DIY手工制作一个六棱锥吊坠模型.准备一张圆形纸片,己知圆心为O,半径为,该纸片上的正六边形的中心为为圆O上的点,如图(2)所示.分别是以为底边的等腰三角形.沿虚线剪开后,分别以为折痕折起,使重合,得到六棱锥,则当六棱锥体积最大时,底面六边形的边长为___________. 四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题10分)己知的内角A,B,C所对的边分别为a,b,c;,且边,(1)求的周长;(2)若角,求的面积.18.(本小题12分)己知数列的前n项和为,且,___________.请在①;②成等比数列;③,这三个条件中任选一个补充在上面题干中,并解答下面问题.(1)求数列的通项公式;(2)若,求数列的前n项和.注:如果选择多个条件分别解答,按第一个解答计分.19.(本小题12分)如图1,直角梯形中,,E为的中点,现将沿着折叠,使,得到如图2所示的几何体,其中F为的中点,G为上一点,与交于点O,连接.(1)求证:平面;(2)若面,求平面与平面的夹角.20.(本小题12 分)皮影戏是一种民间艺术,是我国民间工艺美术与戏曲巧妙结合而成的独特艺术品种,已有千余年的历史。而皮影制作是一项复杂的制作技艺,要求制作者必须具备扎实的绘画功底和高超的雕刻技巧,以及持之以恒的毅力和韧劲。每次制作分为画图与剪裁,雕刻与着色,刷清与装备三道主要工序,经过以上工序处理之后,一幅幅形态各异,富有神韵的皮影在能工巧匠的手里浑然天成,成为可供人们欣赏和操纵的富有灵气的影人。小李对学习皮影制作产生极大兴趣,师从名师勒学苦练,目前水平突飞猛进,三道主要工序中每道工序制作合格的概率依次为,三道序彼此独立,只有当每道工序制作都合格才为一次成功的皮影制作,该皮影视为合格作品.(1)求小李进行3次皮影制作,恰有一次合格作品的概率;(2)若小李制作15次,其中合格作品数为X,求X的数学期望与方差;(3)随着制作技术的不断提高,小李制作的皮影作品被某皮影戏剧团看中,聘其为单位制作演出作品,决定试用一段时间,每天制作皮影作品,其中前7天制作合格作品数y与时间:如下表:(第1天用数字1表示)时间(t)1234567合格作品数(y)3434768其中合格作品数(y)与时间(t)具有线性相关关系,求y关于t的线性回归方程(精确到0.01),并估算第15天能制作多少个合格作品(四舍五入取整)?(参考公式,,参考数据:).21.(本小题12分)已知抛物线上一动点G,过点G作x轴的垂线,垂足为D,M是上一点,且满足.(1)求动点M的轨迹C的方程;(2)若为曲线C上一定点,过点P作两条直线分别与抛物线交于A,B两点,若满足,求证:直线恒过定点,并求出定点坐标.22.(本小题12分)已知函数.(1)若,求的极小值.(2)讨论函数的单调性;(3)当时,证明:有且只有2个零点.2023年湖北省高三上学期1月期末考试高三数学答案一、单选题1-4BCAB5--8DACD二、多选题9.ABD10.CD11.BD12.ACD三、填空题13.2014.1615.16.【答案解析】 1.B【解析】由题设,,∴A的子集共有个.2.C【解析】由题设,,.对A,z的实部是,故A错误;对B,z的虚部是,故B错误;对C,复数在复平面内对应的点在第一象限,故C正确;对D,,故D错误;3.A【解析】根据圆锥的轴截面是一个边长约为2米的正三角形可知,圆锥底面半径为1米,圆锥高为米,母线长为2米,根据圆锥侧面积公式得.4.B【解析】“方程表示焦点在y轴上椭圆”的充要条件为故“”是“方程表示焦点在y轴上椭圆”的必要不充分条件.5.D【解析】∵,∴,由已知,得,∴,当且仅当时等号成立.此时,6.A【解析】∵,∴7.C【解析】由函数为奇函数,有:,且:,结合函数为增函数有:,8.D【解析】记三座体育馆依次为①②③,每个体育馆至少派一名裁判,则有 种方法,事件A:甲派往①,则若①体育馆分2人,则有种,若①体育馆分1人:则有种,共有种,∴,同理,若甲与乙同时派往①体有馆,则①体育馆分两人,有种,∴,A错误;由互斥事件概念易知,B错误;,D正确;事件C:裁判乙派往②体育馆,若②体育馆分2人,则有种,若②体育馆分1人,则有种,共有种,∴,若事件A,C同时发生,则有种,∴,C错误;9.ABD【解析】对A:乙同学体温的最大值为,最小值为,故极差为,A正确;对B:甲同学体温按照从小到大的顺序排列为:,,,,,,,又,故甲同学体温的第三四分位数为上述排列中的第6个数据,即,B正确;对C:乙同学体温按照从小到大的顺序排列为:,,,,,,故乙同学体温的平均数为:,故乙同学体温的方;又甲同学体温的平均数为:,故甲同学体温的方差;又,故乙同学的体温比甲同学的体温稳定,C错误;对D:乙同学体温的众数,中位数,平均数均为,故D正确.10.CD【解析】由题图知:,函数的最小正周期满足,即, 则,所以函数.将点代入解析式中可得,则,得,因为,所以,因为,故A错误;将函数的图像向左平移个单位长度可得函数的图像,故B错误;由,当时,,故C正确;当时,,所以,即,即最小值为,故D正确.11.BD【解析】对于A,直线与圆相离,A错误;对于B,设点,,即的取值范围为,故B正确;对于C,当四边形为正方形时,,又圆的圆心,半径,所以,设点,则,所以,化简得,该方程的判别式,该方程无解,所以不存在点P使得四边形为正方形,故C不正确;对于D,当点P坐标为时,以为直径的圆的圆心为,半径为,所以以为直径的圆的方程为,两圆相减可得直线的方程为:,故D正确。12.ACD【解析】显然,存在满足,所以A项正确;以方向为x轴,方向为y轴,方向为z轴建立空间直角坐标系,则,设平面的法向量为,则,即,令,得 ,故,设直线与面所成角为,则,故B项错误;因为,所以四边形为平行四边形,所以,又因为平面平面,所以平面,又P为线段上动点,所以P到平面距离为定值,故三棱锥体积为定值,当点P与重合时,,故C正确;当点P为中点时,,易得平面,又平面,所以平面,所以平面,即平面,所以,的外接圆半径为,故所求问题等价于求以为半径的底面圆,高为的圆柱的外接球表面积,设三棱锥的外接球半径为R,则,故三棱锥的外接球表面积为,故D项正确.13.20【解析】的展开式中第项为,令得:的系数为.14.16 【解行】设的夹角为,因为向量在向量上的投影向量为,所以,又,则15.【解析】因为双曲线的右焦点,设其左焦点为,因为,P,Q关于原点O对称,所以,由的面积为4,所以,得,又,所以.又由双曲线的对称性可得,由双曲线的定义可得,所以,故离心率16.【解析】连接,交于点H,由题意得,设,则,,因为,所以,六棱锥的高.正六边形的面积,则六棱锥的体积.令函数,则,当时,,当时,,所以在上单调递增,在上单调递减,所以.此时,底面边长. 四、解答题17.(1)(2)【解】(1)解:∵,∴由正弦定理可得,∴,∴三角形周长为.(2)解:由(1)知,由余弦定理得,解得,∴18.(1)(2)【解】(1),所以,即,所以数列是首项为,公差为1的等差数列.若选①:由,得,即,解得.所以,即数列的通项公式为.若选②:由成等比数列,得,解得,所以.若选③:因为,解得,所以.(2),则,则,,两式相减得:,故.19.(1)证明见解析(2)【解】(1)在直角梯形中,, 由翻折的性质可得,翻折后,又,∴,则,故两两互相垂直,∴以点E为坐标原点建立如图所示的空间直角坐标系,如图示:则,∴,∴,即,又平面平面,∴平面.(2)由面,∴,∴,∴点G为的中点,∴在空间直角坐标系中,.∴,设平面的法向量为,则即令,则,故平面的一个法向量为,又平面的一个法向量为∴平面与平面的夹角为.20.(1)(2),(3),14【解】(1)小李制作一次皮影合格的概率,小李进行3次制作,恰有一次合格作品的概率.(2)由题知:,则.(3).,,,, ,,所以回归直线方程为.当时,,所以第15天能制作14个合格作品.21.(1);(2)证明见解析,.【解】(1)设,则,由,得,代入得,所以动点M的轨迹.(2)易得的斜率存在,设,,由联立可得:,①,,即②将①代入②得:,∴,所以,所以直线恒过定点.22.(1)(2)答案见解析(3)证明见解析【解】(1)当时,的定义域为,,所以在区间递减;在区间递增.所以当时,取得极小值.(2)的定义域为,.令,当时,恒成立,所以即在上递增.当时,在区间即递减;在区间即递增.(3)当时,,由(2)知,在上递增,,所以存在使得,即. 在区间,递减;在区间递增.所以当时,取得极小值也即是最小值为,由于,所以.,,根据零点存在性定理可知在区间和,各有1个零点,所以有2个零点.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
湖北省新高考联考协作体2022-2023学年高三数学上学期期末联考试题(Word版含解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-02-22 10:46:05
页数:14
价格:¥3
大小:1.09 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划