山东省某重点校2022-2023学年高三数学上学期期末考试试卷(PDF版含答案)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/11
2/11
3/11
4/11
5/11
6/11
7/11
8/11
9/11
10/11
剩余1页未读,查看更多内容需下载
2022-2023学年度第一学期期末学业水平检测高三数学试题本试题卷共6页,22题。全卷满分150分。考试用时120分钟。注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将准考证号条形码粘贴在答题卡上的指定位置。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需要改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。i21.复数的虚部为1i3331A.iB.C.D.22223422.若(ax)(ax)的展开式中含有x项的系数为18,则a333A.2B.C.或2D.或2222223.已知集合A{(x,y)|xy2x0},B{(x,y)|yk(x1)}.若AB,则33A.kB.3k33333C.k或kD.k3或k3334.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将一个正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则该多面体中具有公共顶点的两个正三角形所在平面的夹角正切值为2A.2B.1C.2D.22高三数学试题第1页(共6页)
x2m5.“m1”是“函数f(x)为奇函数”的x2mA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数f(x)2sin(x)(0π)的部分图象如下图所示,将f(x)的图象向左平移πx个单位后得到函数yg(x)的图象,则函数yg(x)g()的最小值为122yA.429B.47Oπ13πxC.3124D.07.为了解甲、乙两个班级学生的物理学习情况,从两个班学生的物理成绩(均为整数)中各随机抽查20个,得到如图所示的数据图(用频率分布直方图估计总体平均数时,每个区间的值均取该区间的中点值),关于甲、乙两个班级的物理成绩,下列结论正确的是频数频率7组距60.03050.02540.0203210.00505758596768697987888998分数05060708090100分数甲班物理成绩乙班物理成绩A.甲班众数小于乙班众数B.乙班成绩的75百分位数为79C.甲班的中位数为74D.甲班平均数大于乙班平均数估计值8.已知定义域为[0,1]的“类康托尔函数”f(x)满足:①0xx1,f(x)f(x);1212x1②f(x)2f();③f(x)f(1x)1.则f()320231111A.B.C.D.3264128256高三数学试题第2页(共6页)
二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。29.通过长期调查知,人类汗液中A指标的值X服从正态分布N(10,2.5).则A.估计100人中汗液A指标的值超过10的人数约为50B.估计100人中汗液A指标的值超过12.5的人数约为16C.估计100人中汗液A指标的值不超过15的人数约为955D.随机抽检5人中汗液A指标的值恰有2人超过10的概率为16参考数据:2若XN(,),则P(X)0.6827;P(2X2)0.9545.10.已知对任意平面向量AB(x,y),把AB绕其起点沿逆时针方向旋转角得到向量AP(xcosysin,xsinycos),叫做把点B绕点A沿逆时针方向旋转角得到点P.已知平面内点A(2,1),点B(2t,1t),|AB|22,ABOA0,点B绕点A沿逆时π针方向旋转角得到点P,则3A.|BP|22B.AB(2,2)C.B的坐标为(4,1)D.P的坐标为(33,3)226xy11.已知O为坐标原点,离心率为的椭圆C:1(a0,b0)的左,右焦点分别223ab为F,F,C与曲线ycosx恰有三个交点,则12A.椭圆C的长轴长为3B.C的内接正方形面积等于3C.点W在C上,WFWF,则WFF的面积等于11212D.曲线C与曲线y2x4lnx2ln21没有交点3b3ann12.已知数列{a}和{b}满足a1,b0,aa1,2bb1.则nn11n1nn1n42241A.a2b222B.数列{a2b}是等比数列nnC.数列{a2b}是等差数列nnD.aan1n高三数学试题第3页(共6页)
三、填空题:本题共4个小题,每小题5分,共20分。13.已知sinsin1,coscos2,则cos().14.将8块完全相同的巧克力分配给A,B,C,D四人,每人至少分到1块且最多分到3块,则不同的分配方案共有种(用数字作答).215.已知O为坐标原点,抛物线C:y2px(p0)的焦点为F,过F的直线交C于A,B两点,A,B中点D在x轴上方且其横坐标为1,|AB|3,则直线AB的斜率为.16.已知球O的半径为2,圆锥W的顶点和底面圆周上的点均在球O上,记球心O到圆锥W底面的距离为h,圆锥W的底面半径为r.则(1)hr的最大值为;(2)圆锥W体积的最大值为.(本题第一空2分,第二空3分)四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。17.(10分)在ABC中,sinBsinCcosA2sinAsinCcosB3sinAsinBcosC,内角A,B,C的对边分别记为a,b,c.22a2b(1)求的值;2c(2)求cosC的最小值.18.(12分)如图1所示,在ABC中,点E,F在线段AB上,点D在线段BC上,AEEFFB1,CE2,DF1,CEAB.将ACE,BDF分别沿CE,DF折起至点A,B重合为点G,形成如图2所示的几何体W,在几何体W中作答下面的问题.(1)证明:平面EFG平面CEFD;(2)求点D到平面CFG的距离.CCDDEFAEFB图1G图2高三数学试题第4页(共6页)
19.(12分)记数列{a}的前n项和为S,a1,.给出下列两个条件:nn1nn1条件①:数列{a}和数列{Sa}均为等比数列;条件②:2a2a2ana.nn112nn1试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(1)求数列{a}的通项公式;n2ni(2)记正项数列{bn}的前n项和为Tn,b1a2,b2a3,4Tnbnbn1,求[(1)bibi1].i1注:如果选择多个条件分别解答,按第一个解答计分.20.(12分)由mn个小正方形构成长方形网格有m行和n列.每次将一个小球放到一个小正方形内,放满为止,记为一轮.每次放白球的概率为p,放红球的概率为q,pq1.1(1)若m2,pq,记y表示100轮放球实验中“每一列至少一个红球”的轮数,统2计数据如下:n12345y7656423026ˆˆ求y关于n的回归方程lnybna,并预测n10时,y的值(精确到1);12(2)若m2,n2,p,q,记在每列都有白球的条件下,含红球的行数为随机33变量X,求X的分布列和数学期望;mnnm(3)求事件“不是每一列都至少一个红球”发生的概率,并证明:(1p)(1q)1.kxiyikxy5附:经验回归方程系数:bˆi1,aybx;nlny53,lny3.8.kii22i1xikxi1高三数学试题第5页(共6页)
21.(12分)22y已知O为坐标原点,动直线l:ykxm(km0)与双曲线C:x1(b0)的渐近线交2bx222于A,B两点,与椭圆D:y1交于E,F两点.当k10时,2(OAOB)3(OEOF).2(1)求双曲线C的方程;(2)若动直线l与C相切,证明:OAB的面积为定值.22.(12分)1已知函数f(x)xlnx的最小值和g(x)ln(1x)ax的最大值相等.e(1)求a;x2(2)证明:lnxe;ex11m12m2(3)已知m是正整数,证明:[1]e.2m(m1)高三数学试题第6页(共6页)
2022-2023学年度第一学期期末学业水平检测高三数学评分标准一、单项选择题:本题共8小题,每小题5分,共40分。1--8:BCADABDC二、多项选择题:本题共4小题,每小题5分,共20分。9.ABD10.ACD11.BCD12.BCD三、填空题:本题共4个小题,每小题5分,共20分。1256π13.;14.19;15.2;16.(1)2;(2).281四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。17.(10分)解:(1)由正弦定理得:bccosA2accosB3abcosC··································2分222222222bcaacbabc由余弦定理得:bc()2ac()3ab()··········4分2bc2ac2ab222222222所以(bca)2(acb)3(abc)22222a2b化简得a2b3c,所以3·······················································5分2c22122222ab(a2b)abc3(2)由余弦定理:cosC···························6分2ab2ab2212ab3312ab()······················7分2ab6ba12ab22······························9分6ba3当仅当b2a(即a:b:c3:6:5)时取等号2所以cosC的最小值为···········································································10分318.(12分)解:(1)由题知:因为CEEG,CEEF,EGEFE,所以CE平面EFG····················································································3分又因为CE平面CEFD,平面EFG平面CEFD·········································4分(2)在平面EFG内过点F做EF的垂线FH,因为平面EFG平面CEFD,所以FH平面CEFD······································5分C如图,以F为坐标原点,直线FE,FH,FD分别为x,y,z轴,建立空间直角坐标系··············································6分z13D则F(0,0,0),C(1,0,2),G(,,0),D(0,0,1)···········7分22uuur13E所以FD0,0,1,FG(,,0),FC(1,0,2)········8分F22xGHy高三数学答案第1页(共5页)
设平面CFG的法向量为n(a,b,c),a3bnFG00因为,即22,取b2,从而n(23,2,3)···············11分nFC0a2c0|FDn|357所以D到平面CFG的距离为h···································12分|n|191919.(12分)解:(1)方案一:选条件①.因为数列{Sa}为等比数列n122所以(Sa)(Sa)(Sa),即(2aa)2a(2aaa)·················2分211131121123设等比数列{a}的公比为q,因为a1n122所以(2q)2(2qq),解得q2或q0(舍)·····································5分n1n1*所以aaq2(nN)······································································6分n1方案二:(1)选条件②.nn1*当n2时,因为2a2a2ana(nN)①12nn1n1n2所以2a2a2a(n1)a12n1nnn12所以2a2a2a2(n1)a②···············································3分12n1nan+1①②得2ana2(n1)a,即=2(n2)·········································4分nn1nana2当n1时,2aa,=2适合上式····························································5分12a1所以数列{a}是首项为1,公比为2的等比数列nn1n1*所以aaq2(nN)······································································6分n1(2)由题知:4Tbb,4Tbbnnn1n1n1n2两式做差得:4(TT)bbbbn1nn1n2nn1所以4bb(bb),得bb4······················································8分n1n1n2nn2n*所以{b}(kN)为首项b4,公差等于4的等差数列,2k2所以b4(k1)44k2k*同理:{b}(kN)为首项b2,公差等于4的等差数列,2k11所以b2(k1)44k22k1所以b2nn2n2nii所以[(1)bibi1]4(1)i(i1)i1i12ni2所以4(1)i(i1)4[(26)(1220)4n]8n8n····················12分i1高三数学答案第2页(共5页)
20.(12分)5nilnyi5nlny5353.834解:(1)由题知:i1···············1分b0.4n22554510ni5ni1所以a3.80.435,·············································································2分所以线性回归方程为:lny0.4n5·····························································3分所以,估计n10时,ye3·····································································4分(2)由题知:X的取值可能为0,1,2·······························································5分记“含红球的行数为k”为事件A(k0,1,2),记“每列都有白球”为事件B,k4P(AB)p10所以P(X0)P(A|B)=·········································6分022P(B)[1q]2513122P(AB)CpqCpq16142P(X1)P(A|B)=·······························7分122P(B)[1q]2512P(AB)C(pq)822P(X2)P(A|B)=········································8分222P(B)[1q]25所以X的分布列为:X0121168P(Xk)25252513832所以数学期望为E(X)012········································10分25252525mn(3)证明:因为每一列至少一个红球的概率为(1p)mn记“不是每一列都至少一个红球”为事件A,所以P(A)1(1p)····················11分nm记“每一行都至少一个白球”为事件B,所以P(B)(1q)mnnm显然,AB,所以P(A)P(B),所以(1p)(1q)1······················12分21.(12分)解:(1)设A(x,y),B(x,y),E(x,y),F(x,y)112233443因为2(OAOB)3(OEOF),所以xx(xx)·································1分12342ykxmmm由,得x1;同理可得x2········································3分ybxbkbk2km所以xx···················································································4分1222bkykxm2224km由x2,得(12k)x4kmx2m20,所以xx·····5分2342y112k2高三数学答案第3页(共5页)
2km6km222所以,即3k3b12k,解得b3222bk12k22y所以双曲线C的方程为x1·································································6分3m3mm3m(2)由(1)得A(,),B(,)k3k3k3k3224m2m4m2m所以|OA|||,|OB|||··················8分22(k3)k3(k3)k322114m33mS|OA||OB|sinAOB||||····························9分OAB2222k32k3ykxm222由y2,得(3k)x2kmxm30···········································10分2x13因为直线l与双曲线C相切,2222所以4km4(3k)(m3)022即mk30······················································································11分23m所以S||3为定值··································································12分OAB2k322.(12分)解:(1)由题知:f(x)的定义域为(0,),g(x)的定义域为(1,)·················1分因为f(x)lnx1·····················································································2分11所以,当x(0,)时,f(x)0,f(x)在(0,)上单调递减;ee11当x(,)时,f(x)0,f(x)在(,)上单调递增;ee1所以f(x)f()0···················································································3分e1又因为g(x)a,1x若a0,则g(x)0,g(x)在(1,+)上无最大值;···································4分11若a0,g(x)a0,解得x1;1xa11所以,当x(1,1)时,g(x)0,g(x)在(1,1)上单调递增;aa11当x(1,)时,g(x)0,g(x)在(1,)上单调递减;aa1所以,g(x)g(1)alna10a高三数学答案第4页(共5页)
1令h(a)alna1(a0),则h(a)1a所以,h(x)在(0,1)上单调递减,在(1,)上单调递增;所以h(a)h(1)0综上,a1································································································5分x21x1(2)要证明:lnxe;只需证xlnxxe····························7分exee1由(1)知:f(x)0,当仅当x时取等号;ex1只需证:xe0(等号不同取)····························································8分ex1x设p(x)xe,则p(x)(1x)e,e所以,p(x)在(0,1)上单调递增,p(x)在(1,)上单调递减;所以,p(x)p(1)0,当仅当x1时取等号综上,命题得证····························································································9分11m12m2(3)要证明:[1]e;2m(m1)11只需证(m1)ln[1]2m(m1)2(m1)11即证ln[1]·····························································10分22m(m1)2(m1)m11设(x)ln(1x)x,x(0,);m12m(m1)m1m11所以(x)0·················································11分1xm11x11m1所以(x)在(0,)上单调递增,(x)(0)0m111所以,()ln(1)022m(m1)2m(m1)2(m1)11m12m2综上,[1]e成立·························································12分2m(m1)高三数学答案第5页(共5页)
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)