首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
沪科版(2012)
>
九年级下册
>
第24章 圆
>
24.5 三角形的内切圆
>
沪科版九下第24章圆24.5三角形的内切圆课件
沪科版九下第24章圆24.5三角形的内切圆课件
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/25
2
/25
3
/25
4
/25
剩余21页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
24.5三角形的内切圆第24章圆 小明在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?情境引入 三角形内切圆的相关概念若要使裁下的圆形最大,则它与三角形三边应有怎样的位置关系?观察与思考最大的圆与三角形三边都相切 与三角形三边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.BACI☉I是△ABC的内切圆,点I是△ABC的内心,△ABC是☉I的外切三角形.知识要点 观察与思考问题1如图,若⊙O与∠ABC的两边相切,那么圆心O的位置有什么特点?圆心O在∠ABC的平分线上.NCOMAB三角形内切圆的作法及内心的性质 COAB问题2如图,如果⊙O与△ABC的三边都相切,那么圆心O应该在什么位置?圆心O在∠ABC与∠ACB这两个角的平分线的交点处.AO,BO,CO分别是∠BAC,∠ABC,∠ACB的平分线FED线段OD,OE,OF的长度相等,都是三角形内切圆的半径 作法:1.作∠ABC,∠ACB的平分线BE,CF,设它们交于点O;2.过点O作OD⊥BC于点D;3.以点O为圆心、OD为半径作☉O.则☉O即为所作.问题3现在你知道如何画△ABC的内切圆了吗?COABFED 三角形内心的性质:三角形的内心在三角形的三条角平分线的交点处.三角形的内心到三角形的三边距离相等.知识要点COABEDF 例1如图,△ABC中,∠ABC=43°,∠ACB=61°,点I是△ABC的内心,求∠BIC的度数.解:连接IB,IC.ABCI∵点I是△ABC的内心,∴BI,CI分别是∠ABC,∠ACB的平分线.在△IBC中,典例精析 例2如图,一个木模的上部是圆柱,下部是底面为等边三角形的直三棱柱.圆柱的下底面圆是直三棱柱上底面等边三角形的内切圆,已知直三棱柱的底面等边三角形的边长为3cm,求圆柱底面圆的半径.该问题可以抽象为如下所示的几何图形. CABrOD解:如图,设圆O切AB于点D,连接OA、OB、OD.∵圆O是等边△ABC的内切圆,∴AO、BO是∠BAC、∠ABC的平分线.∴∠OAB=∠OBA=30°.∵OD⊥AB,AB=3cm,∴AD=BD=AB=1.5(cm).∴OD=AD·tan30°=(cm).答:圆柱底面圆的半径为cm. 例3△ABC的内切圆☉O与BC、CA、AB分别相切于点D、E、F,且AB=13cm,BC=14cm,CA=9cm,求AF、BD、CE的长.想一想:图中你能找出哪些相等的线段?理由是什么?BACEDFO 解:设AF=xcm,则AE=xcm.∴CE=CD=AC-AE=9-x(cm),BF=BD=AB-AF=13-x(cm).由BD+CD=BC,可得(13-x)+(9-x)=14,∴AF=4cm,BD=9cm,CE=5cm.方法小结:关键是熟练运用切线长定理,将相等线段转化集中到某条边上,从而建立方程求解.解得x=4.BACEDFO 类比归纳名称确定方法图形性质外心:三角形外接圆的圆心内心:三角形内切圆的圆心三角形三边垂直平分线的交点1.OA=OB=OC2.不一定在三角形内部三角形三条角平分线的交点1.到三边距离相等2.AO、BO、CO分别平分∠BAC、∠ABC、∠ACB3.在三角形内部ABOCABCO CABOD1.求边长为6cm的等边三角形的内切圆半径与外接圆半径.解:如图,由题意可知BC=6cm,∠ABC=60°,OD⊥BC,BO平分∠ABC.∴∠OBD=30°,BD=3cm.内切圆半径外接圆半径练一练 变式:求边长为a的等边三角形的内切圆半径r与外接圆半径R的比.sin∠OBD=sin30°=CABODRr ABCODEFABCDEFO2.设△ABC的面积为S,周长为L,△ABC内切圆的半径为r,则S,L与r之间存在怎样的数量关系? 3.如图,直角三角形的两直角边分别是a、b,斜边为c,则其内切圆的半径r为(用含a、b、c的代数式表示)._________ABCOcDEr解析:如图,过点O分别作AC,BC,AB的垂线,垂足分别为D,E,F.F则AD=AC-DC=b-r,BE=BC-CE=a-r.∵AF=AD,BF=BE,AF+BF=AB,∴a-r+b-r=c,∴barrr (3)若∠BIC=100°,则∠A=°.(2)若∠A=80°,则∠BIC=°.130201.如图,在△ABC中,点I是内心.(1)若∠ABC=50°,∠ACB=70°,∠BIC=_____°.ABCI(4)试探索:∠A与∠BIC之间存在怎样的数量关系?120 2.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是____步.6解析:先由勾股定理得出斜边的长,再根据公式r=求出该直角三角形内切圆的半径,即可得内切圆直径的长度. O3.如图,⊙O被△ABC的三条边所截得的弦长相等,则下列说法正确的是()A.点O是△ABC的内心B.点O是△ABC的外心C.△ABC是正三角形D.△ABC是等腰三角形解析:过O作OM⊥AB于M,ON⊥BC于N,OQ⊥AC于Q,连接OK、OD、OF,根据垂径定理和已知求出DM=KQ=FN,根据勾股定理求出OM=ON=OQ,即点O是△ABC的内心.A 4.如图,△ABC中,I是内心,∠BAC的平分线和△ABC的外接圆相交于点D.求证:DI=DB.证明:连接BI.∵I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠CBI.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BID=∠BAD+∠ABI,∠IBD=∠CBI+∠CBD,∴∠BID=∠IBD.∴BD=ID. 拓展提升:直角三角形的两直角边分别是3cm,4cm,试问:(1)它的外接圆半径是cm;内切圆半径是cm.(2)若移动点O的位置,使☉O保持与△ABC的边AC、BC都相切,求☉O的半径r的取值范围.2.51 解:如图,设☉O与BC、AC相切的最大圆与BC、AC的切点分别为B、D,连接OB、OD,则四边形BODC为正方形.∴OB=BC=3.∴半径r的取值范围为0<r≤3. 三角形的内切圆运用切线长定理,将相等线段转化集中到某条边上,从而建立方程求解.有关概念内心的概念及性质应用
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
沪科版九下数学24.5三角形的内切圆教案
沪科版九下数学24.5三角形的内切圆学案
沪科版九下数学24.5三角形的内切圆课件
华师大版九下第二十七章圆27.2与圆有关的位置关系5三角形的内切圆教案
华师大版九下第二十七章圆27.2与圆有关的位置关系5三角形的内切圆学案
2022沪科版九下第24章圆24.4直线与圆的位置关系教案
2022沪科版九下第24章圆24.5三角形的内切圆教案
2022沪科版九下第24章圆24.5三角形的内切圆教学设计
2022沪科版九下第24章圆24.5三角形的内切圆学案
沪科版九下第24章圆24.5三角形的内切圆教案
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-02-19 17:42:02
页数:25
价格:¥3
大小:3.01 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划